Molecular Mechanisms Regulating Inhibitory Circuitry in the Spinal Cord
调节脊髓抑制电路的分子机制
基本信息
- 批准号:10624944
- 负责人:
- 金额:$ 36.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AdhesionsAdhesivesAfferent NeuronsAnimal BehaviorBindingBiological AssayCNTNAP1 geneCell AdhesionCell Adhesion MoleculesCentral Nervous SystemCholera Toxin Protomer BCoupledDedicationsDevelopmentDiseaseDistalDyesElectrophysiology (science)ExtensorFlexorFunctional disorderGenerationsGoalsHealthIn VitroIndividualInjectionsInjuryInterneuronsKnowledgeLabelLimb structureMeasuresMediatingMedicalMethodologyMicroanatomyMissionMolecularMotorMotor NeuronsMusMuscleMuscle functionNeurodegenerative DisordersNeurologicNeuronsNeurotrophin 3PhenotypePhysiologicalProcessProprioceptorProteinsPublic HealthReporterResearchRoleSchizophreniaScienceSensorySignal TransductionSpecificitySpinalSpinal CordSpinal cord injurySynapsesTamoxifenTestingTracerUnited States National Institutes of HealthVertebral columnWorkcontactindensitydifferential expressioneffective therapyexperimental studyfluorophoreimprovedin vivoinhibitory neuroninnovationknowledge basemouse geneticsnervous system disorderneuralneural circuitneuronal circuitryneuropsychiatryneurotransmitter releasepresynapticprotein complexreceptorsensory inputsynaptic inhibitionsynaptogenesistargeted treatmenttime use
项目摘要
Establishing specific neuronal circuits is fundamental for the generation of coordinated muscle function.
However, the signals underlying the specificity of connection between interneurons and their targets in the
mammalian central nervous system (CNS) remain largely unknown to date. Our long-term research goal is to
understand the rules of interneuron circuit wiring and the molecular mechanisms that control it. The objective of
the proposed research is to describe how a combination of adhesive and neurotrophic signals determine
GABAergic interneuron circuit connectivity. A class of GABAergic interneurons, termed GABApre, forms synaptic
contacts with the terminals of proprioceptive sensory afferents, and thus directly controls proprioceptive sensory
input through an inhibitory strategy known as presynaptic inhibition. We will test the hypothesis that the
connectivity of a class of spinal GABAergic neurons varies between functionally-distinct sensory neurons and
that this connectivity is mediated via (ii) differential expression of muscle-derived neurotrophin (NT)-3 and (ii) a
matrix of IgSF adhesion proteins. The rationale underlying this proposal is that through understanding the
mechanisms underlying GABAergic interneuron circuit formation, we will enhance our understanding of — and
ultimately control over — inhibitory neuronal circuit development and function in vivo. We will test our hypothesis
with the following three aims: #1) Determine the functional specificity of GABAergic interneuron circuitry; #2)
Investigate the influence of muscle-derived NT-3 on GABApre synapse formation; and #3) Assess the role of
Contactin-5 in GABApre-sensory synapse formation. In the first aim, we combine timed tamoxifen injections,
mouse genetics and CTb labeling to analyze whether the specific connectivity of individual GABApre
interneurons may be functionally relevant. In the second aim, we examine the expression of Gabrg1 in
functionally distinct proprioceptive sensory neurons and assess consequences of changing NT-3 levels on both
Gabrg1 expression and GABApre terminal number. In the third aim, we perturb cell adhesion signaling using
mouse genetics and perform phenotypic analysis using molecular, micro-anatomic and functional assays,
including an electrophysiological measure of presynaptic inhibition. We also use an in vitro binding assay to
screen for new adhesion molecule candidates relevant for GABApre synaptic specificity in vivo. The research
proposed in this application is innovative because it combines a molecularly-defined interneuronal circuit with a
unique constellation of methodologies to integrate functional specificity with target-derived signals. The research
will provide an understanding of functional diverse GABApre circuitry and also advance our understanding of
how basic circuit paradigms may be adapted for diverse motor functions. The proposed work is significant
because it will contribute to fundamental knowledge of the formation of circuit-level mechanisms and neural
strategies used in the CNS; this in turn will advance our efforts to develop effective therapies to rebuild circuitry
and muscle function after spinal cord injury or other neurological diseases.
建立特定的神经元回路是产生协调肌肉功能的基础。
然而,神经元间与其靶点之间连接的特异性背后的信号
到目前为止,哺乳动物的中枢神经系统(CNS)仍然很大程度上是未知的。我们的长期研究目标是
了解神经元间电路连接的规则和控制它的分子机制。的目标是
这项拟议的研究旨在描述粘附性信号和神经营养信号的组合如何决定
GABA能神经元间回路连接。一类GABA能中间神经元,称为GAABApre,形成突触
与本体感觉传入的终末接触,从而直接控制本体感觉
通过一种称为突触前抑制的抑制策略进行输入。我们将检验这一假设
一类脊髓GABA能神经元在功能不同的感觉神经元和
这种连接是通过(Ii)肌源性神经营养因子(NT)-3和(Ii)a的差异表达来调节的
IgSF黏附蛋白基质。这项建议背后的理由是,通过理解
GABA能中间神经元回路形成的机制,我们将增进我们对-和
最终控制体内过度抑制神经元回路的发育和功能。我们将检验我们的假设
目的如下:#1)确定GABA能神经元间回路的功能特异性;#2)
研究肌源性NT-3对GABA-Pre突触形成的影响;以及#3)评估
GABA前感觉突触形成中的Contactin-5。在第一个目标中,我们结合了定时他莫昔芬注射,
用小鼠遗传学和CTB标记分析个体GABApre的特异性连接性
中间神经元可能在功能上相关。在第二个目标中,我们检测了Gabrg1在
不同功能的本体感觉神经元并评估改变NT-3水平对两者的影响
Gabrg1的表达和GABApre的终端数。在第三个目标中,我们使用
小鼠遗传学和使用分子、显微解剖和功能分析进行表型分析,
包括突触前抑制的电生理测量。我们还使用了体外结合试验来
筛选与体内GABApre突触特异性相关的新的黏附分子候选。这项研究
在本申请中提出的是创新的,因为它结合了分子定义的神经元间电路和
独一无二的方法学组合,将功能特异性与目标信号相结合。这项研究
将提供对不同功能的GABApre电路的理解,并促进我们对
基本电路范例如何适应不同的运动功能。拟议的工作意义重大
因为它将有助于形成电路级机制和神经的基础知识
在中枢神经系统中使用的策略;这反过来将推动我们开发有效的治疗方法来重建电路
以及脊髓损伤或其他神经疾病后的肌肉功能。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sensory and descending motor circuitry during development and injury.
- DOI:10.1016/j.conb.2018.08.008
- 发表时间:2018-12
- 期刊:
- 影响因子:5.7
- 作者:Plant GW;Weinrich JA;Kaltschmidt JA
- 通讯作者:Kaltschmidt JA
From induction to conduction: how intrinsic transcriptional priming of extrinsic neuronal connectivity shapes neuronal identity.
- DOI:10.1098/rsob.140144
- 发表时间:2014-10
- 期刊:
- 影响因子:5.8
- 作者:Russ JB;Kaltschmidt JA
- 通讯作者:Kaltschmidt JA
Proprioception revisited: where do we stand?
- DOI:10.1016/j.cophys.2021.02.003
- 发表时间:2021-06
- 期刊:
- 影响因子:2.5
- 作者:Shadrach JL;Gomez-Frittelli J;Kaltschmidt JA
- 通讯作者:Kaltschmidt JA
Transcription factor gene Pea3 regulates erectile function during copulation in mice.
- DOI:10.1371/journal.pone.0276069
- 发表时间:2022
- 期刊:
- 影响因子:3.7
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Julia Anna Kaltschmidt其他文献
Julia Anna Kaltschmidt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Julia Anna Kaltschmidt', 18)}}的其他基金
Development and Patterning of the Enteric Nervous System
肠神经系统的发育和模式
- 批准号:
10741619 - 财政年份:2023
- 资助金额:
$ 36.16万 - 项目类别:
Molecular Mechanisms Regulating Inhibitory Circuitry in the Spinal Cord
调节脊髓抑制电路的分子机制
- 批准号:
9521466 - 财政年份:2017
- 资助金额:
$ 36.16万 - 项目类别:
Molecular Mechanisms Regulating Inhibitory Circuitry in the Spinal Cord
调节脊髓抑制电路的分子机制
- 批准号:
8692038 - 财政年份:2013
- 资助金额:
$ 36.16万 - 项目类别:
Molecular Mechanisms Regulating Inhibitory Circuitry in the Spinal Cord
调节脊髓抑制电路的分子机制
- 批准号:
8868192 - 财政年份:2013
- 资助金额:
$ 36.16万 - 项目类别:
Molecular Mechanisms Regulating Inhibitory Circuitry in the Spinal Cord
调节脊髓抑制电路的分子机制
- 批准号:
10413154 - 财政年份:2013
- 资助金额:
$ 36.16万 - 项目类别:
Molecular Mechanisms Regulating Inhibitory Circuitry in the Spinal Cord
调节脊髓抑制电路的分子机制
- 批准号:
8562065 - 财政年份:2013
- 资助金额:
$ 36.16万 - 项目类别:
Molecular Mechanisms Regulating Inhibitory Circuitry in the Spinal Cord
调节脊髓抑制电路的分子机制
- 批准号:
9093872 - 财政年份:2013
- 资助金额:
$ 36.16万 - 项目类别:
Molecular Mechanisms Regulating Inhibitory Circuitry in the Spinal Cord
调节脊髓抑制电路的分子机制
- 批准号:
10159975 - 财政年份:2013
- 资助金额:
$ 36.16万 - 项目类别:
相似海外基金
I-Corps: Translation Potential of Peptidic Ensembles as Novel Bio-adhesives
I-Corps:肽整体作为新型生物粘合剂的转化潜力
- 批准号:
2409620 - 财政年份:2024
- 资助金额:
$ 36.16万 - 项目类别:
Standard Grant
Architectural design of active adhesives
活性粘合剂的结构设计
- 批准号:
2403716 - 财政年份:2024
- 资助金额:
$ 36.16万 - 项目类别:
Standard Grant
Design of non-swellable adhesives for brain surgery using cyclodextrin inclusion polymer
使用环糊精包合物聚合物脑外科不可溶胀粘合剂的设计
- 批准号:
23H01718 - 财政年份:2023
- 资助金额:
$ 36.16万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Meta-material adhesives for improved performance and functionalisation of bondlines
超材料粘合剂可提高粘合层的性能和功能化
- 批准号:
EP/W019450/1 - 财政年份:2023
- 资助金额:
$ 36.16万 - 项目类别:
Fellowship
Light-propelled dental adhesives with enhanced bonding capability
具有增强粘合能力的光驱动牙科粘合剂
- 批准号:
10741660 - 财政年份:2023
- 资助金额:
$ 36.16万 - 项目类别:
DMREF: Accelerating the Design of Adhesives with Nanoscale Control of Thermomechanical Properties
DMREF:通过热机械性能的纳米级控制加速粘合剂的设计
- 批准号:
2323317 - 财政年份:2023
- 资助金额:
$ 36.16万 - 项目类别:
Continuing Grant
Mag-Cure: A novel method for magnetically induced bonding and de-bonding of thermoset adhesives in the Automotive Industry
Mag-Cure:汽车行业中热固性粘合剂磁感应粘合和脱粘的新方法
- 批准号:
10062336 - 财政年份:2023
- 资助金额:
$ 36.16万 - 项目类别:
Collaborative R&D
Biodegradable, Biocompatible Pressure Sensitive Adhesives
可生物降解、生物相容性压敏粘合剂
- 批准号:
10677869 - 财政年份:2022
- 资助金额:
$ 36.16万 - 项目类别:
Poly(glycerol carbonate) pressure sensitive adhesives for the in vivo closure of alveolar pleural fistulae
用于体内闭合肺泡胸膜瘘的聚(甘油碳酸酯)压敏粘合剂
- 批准号:
10746743 - 财政年份:2022
- 资助金额:
$ 36.16万 - 项目类别:
Mechanisms of Blood Clot Adhesion and the Design of New Wet Adhesives
血凝块粘附机制及新型湿粘合剂的设计
- 批准号:
RGPIN-2018-04918 - 财政年份:2022
- 资助金额:
$ 36.16万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




