Discovery of allosteric activators of phospholipase C-gamma2 to treat Alzheimer's disease
发现用于治疗阿尔茨海默病的磷脂酶 C-gamma2 变构激活剂
基本信息
- 批准号:10901007
- 负责人:
- 金额:$ 76.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AffinityAllosteric RegulationAlzheimer&aposs DiseaseAlzheimer&aposs disease patientAlzheimer&aposs disease riskAlzheimer&aposs disease therapyAmericanAmyloidAmyloid beta-ProteinAntibodiesAreaBiochemicalBiochemistryBiologicalBiological AssayBiological MarkersBiophysicsBrainCD8-Positive T-LymphocytesCSF1R geneCell physiologyCellsChemicalsClassificationClinical ResearchCollectionComputing MethodologiesCoupledDataDevelopmentDiseaseDisease ProgressionDockingDrug DesignDrug usageEndocytosisFailureFluorogenic SubstrateFollow-Up StudiesFutureGenesGeneticGoalsHumanHydrolysisImmune responseImpaired cognitionIndividualInformaticsInterleukinsIsoenzymesLate Onset Alzheimer DiseaseLeadLengthLibrariesLigandsLinkLipid BindingMembraneMicrogliaModelingMutationPLCG2 genePLCgamma2PathologicPatientsPersonsPhagocytesPhagocytosisPharmaceutical ChemistryPhenocopyPhosphatidylinositol 4,5-DiphosphatePhosphatidylinositolsPhospholipasePhospholipase CPhosphorylationPopulationProcessPropertyRegulationReproducibilityResearchResolutionRisk ReductionRoleSiteStructural ModelsStructureTREM2 geneTestingVariantWorkapolipoprotein E-4cheminformaticsdrug developmentdrug discoverydrug-like compoundgenetic associationgenetic variantgenome wide association studygenome-wide analysishigh throughput screeninginventionmild cognitive impairmentmolecular dynamicsnervous system disorderneuroinflammationneuroprotectionnew therapeutic targetnovelnovel therapeuticspharmacologicreceptorrecruitreduce symptomsresponsescreeningside effectsmall moleculesmall molecule therapeuticssuccesstau-1tool
项目摘要
ABSTRACT
Current therapies for Alzheimer’s disease (AD) do not reverse, or even slow, progression of the disease.
This situation is dire and exacerbated by the failure of antibodies directed toward two of the more promising
targets—phosphorylated tau and beta-amyloids—to treat the disease. Clearly, new treatments are urgently
needed.
In 2017, a large genome-wide study associated a naturally-occurring variant (P522R) of PLCG2, the gene
encoding PLC-2, with protection from late onset AD. In follow-up studies, this genetic association has remained
strong and highly reproducible. Even more encouraging, in clinical studies of patients with mild cognitive
impairment, people that carried PLCG2 (P522R) had slower rates of cognitive decline compared to non-carriers.
Protection was observed even for patients homozygous for ApoE4, a biomarker strongly linked to AD. In the
brain, PLC-2 is primarily expressed in microglial cells where it controls phagocytic and neuroinflammatory
processes. It is more highly expressed in pathological areas of patients with AD. In microglia, PLC-2 is activated
downstream of both TREM2 (which uses ApoE4 as a ligand) and CSF1R, two transmembrane receptors that
are strongly linked to AD. Similarly, PLC-2 activates PKC, which is also linked to AD. Thus, genetic and cellular
data strongly support PLC-2 as a novel therapeutic target for treatment of AD.
The phospholipase activity of PLC-2 (P522R) is modestly elevated relative to its wild-type counterpart and
it is this increased activity in microglia that is generally accepted to protect against AD. We propose to identify
and optimize small molecules that selectively activate PLC-2 to reproduce the neuroprotective effects of PLC-
2 (P522R) and treat AD. The research plan relies on complementary high-throughput assays enabled by two
fluorogenic substrates for eukaryotic PLCs that we invented explicitly for this research. Consequently, we will
pursue three Aims. In Aim 1, in-house collections totaling ~300,000 compounds will be screened for activators
of PLC-2 and primary hits verified for activity, selectivity, composition, and purity; cheminformatics will be used
to structurally classify hits. In Aim 2, a high-quality model of full-length PLC-2 coupled with molecular dynamics
simulations will be used for computational screens of tens of millions of compounds. In Aim 3, a suite of
biochemical, biophysical, and cell biological studies will be used to prioritize allosteric activators of PLC-2 with
favorable chemical and pharmacological properties. These novel small molecules will be invaluable tools to
further understand how PLC-2 (P522R) reduces the risk of AD. The small molecules will also be used as leads
for the development of novel therapeutics to treat AD.
摘要
目前阿尔茨海默病(AD)的治疗方法不能逆转,甚至不能减缓疾病的进展。
这种情况是可怕的,并加剧了针对两个更有希望的抗体的失败。
磷酸化tau蛋白和β-淀粉样蛋白-来治疗这种疾病。显然,新的治疗方法是迫切的,
needed.
2017年,一项大型全基因组研究将PLCG 2的一种天然变体(P522 R)
编码PLC-1002,具有防止迟发性AD的保护作用。在后续研究中,这种遗传关联仍然存在,
强大且可重复性高。更令人鼓舞的是,在对轻度认知障碍患者的临床研究中,
携带PLCG 2(P522 R)的人与非携带者相比,认知能力下降的速度较慢。
甚至在ApoE 4纯合子患者中也观察到了保护作用,ApoE 4是一种与AD密切相关的生物标志物。在
在大脑中,PLC-102主要表达于小胶质细胞中,在那里它控制吞噬和神经炎症
流程.它在AD患者的病理区域中表达更高。在小胶质细胞中,PLC-102被激活,
TREM 2(其使用ApoE 4作为配体)和CSF 1 R两者的下游,两种跨膜受体,
与AD密切相关。类似地,PLC-β 2激活PKC β 2,而PKC β 2也与AD相关.因此,遗传和细胞
数据强烈支持PLC-102作为治疗AD的新治疗靶点。
PLC-102(P522 R)的磷脂酶活性相对于其野生型对应物适度升高,
正是这种小胶质细胞活性的增加被普遍认为可以预防AD。我们建议确定
并优化选择性激活PLC-2的小分子,以重现PLC-2的神经保护作用。
P522 R的表达,治疗AD。该研究计划依赖于两种互补的高通量测定,
我们为这项研究明确发明的真核PLC的荧光底物。因此,我们将
追求三个目标。在目标1中,将对总计约300,000种化合物的内部收集进行活化剂筛选
的PLC-PLC 2和初步命中验证的活性,选择性,组成和纯度;将使用化学信息学
对命中进行结构分类。在Aim 2中,全长PLC-102的高质量模型与分子动力学耦合,
模拟将用于数千万种化合物的计算筛选。在目标3中,一套
生物化学、生物物理学和细胞生物学研究将用于优先考虑PLC-12的变构激活剂,
良好的化学和药理学性质。这些新颖的小分子将是宝贵的工具,
进一步了解PLC-102(P522 R)如何降低AD的风险。这些小分子也将被用作
用于开发治疗AD的新疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kenneth Hugh Pearce其他文献
Kenneth Hugh Pearce的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kenneth Hugh Pearce', 18)}}的其他基金
A high-throughput platform to identify selective allosteric inhibitors of the PLC-y isozymes
用于鉴定 PLC-y 同工酶选择性变构抑制剂的高通量平台
- 批准号:
10185322 - 财政年份:2021
- 资助金额:
$ 76.32万 - 项目类别:
A high-throughput platform to identify selective allosteric inhibitors of the PLC-y isozymes
用于鉴定 PLC-y 同工酶选择性变构抑制剂的高通量平台
- 批准号:
10399533 - 财政年份:2021
- 资助金额:
$ 76.32万 - 项目类别:
A high-throughput platform to identify selective allosteric inhibitors of the PLC-y isozymes
用于鉴定 PLC-y 同工酶选择性变构抑制剂的高通量平台
- 批准号:
10598548 - 财政年份:2021
- 资助金额:
$ 76.32万 - 项目类别:
Pathological Reprogramming of DNA Damage Signaling in Neoplastic Cells
肿瘤细胞中 DNA 损伤信号的病理重编程
- 批准号:
10530649 - 财政年份:2019
- 资助金额:
$ 76.32万 - 项目类别:
Establishing MAGE-A4/RAD18 as a novel cancer-specific chemotherapeutic target
将 MAGE-A4/RAD18 确立为新型癌症特异性化疗靶点
- 批准号:
10132267 - 财政年份:2019
- 资助金额:
$ 76.32万 - 项目类别:
Establishing MAGE-A4/RAD18 as a novel cancer-specific chemotherapeutic target
将 MAGE-A4/RAD18 确立为新型癌症特异性化疗靶点
- 批准号:
10596489 - 财政年份:2019
- 资助金额:
$ 76.32万 - 项目类别:
Establishing MAGE-A4/RAD18 as a novel cancer-specific chemotherapeutic target
将 MAGE-A4/RAD18 确立为新型癌症特异性化疗靶点
- 批准号:
10363652 - 财政年份:2019
- 资助金额:
$ 76.32万 - 项目类别:
Establishing MAGE-A4/RAD18 as a novel cancer-specific chemotherapeutic target
将 MAGE-A4/RAD18 确立为新型癌症特异性化疗靶点
- 批准号:
9905492 - 财政年份:2019
- 资助金额:
$ 76.32万 - 项目类别:
Pathological Reprogramming of DNA Damage Signaling in Neoplastic Cells
肿瘤细胞中 DNA 损伤信号的病理重编程
- 批准号:
10301006 - 财政年份:2019
- 资助金额:
$ 76.32万 - 项目类别:
相似海外基金
Molecular insights into the allosteric regulation of opioid receptors
阿片受体变构调节的分子见解
- 批准号:
DE240100931 - 财政年份:2024
- 资助金额:
$ 76.32万 - 项目类别:
Discovery Early Career Researcher Award
Allosteric regulation of lysine degradation as a novel pathophysiological mechanism in glutaric aciduria type 1
赖氨酸降解的变构调节作为 1 型戊二酸尿症的一种新的病理生理机制
- 批准号:
10720740 - 财政年份:2023
- 资助金额:
$ 76.32万 - 项目类别:
Elucidating the Mechanism for Allosteric Regulation of SIRT1 through the N-terminal Region
阐明 SIRT1 通过 N 末端区域变构调节的机制
- 批准号:
10627735 - 财政年份:2023
- 资助金额:
$ 76.32万 - 项目类别:
Allosteric Regulation of Actin Capping Protein: Mechanism and Significance
肌动蛋白加帽蛋白的变构调节:机制和意义
- 批准号:
10330809 - 财政年份:2022
- 资助金额:
$ 76.32万 - 项目类别:
Allosteric Regulation of Actin Capping Protein: Mechanism and Significance
肌动蛋白加帽蛋白的变构调节:机制和意义
- 批准号:
10797746 - 财政年份:2022
- 资助金额:
$ 76.32万 - 项目类别:
Structural and functional studies of allosteric regulation of metabolic enzymes
代谢酶变构调节的结构和功能研究
- 批准号:
RGPIN-2020-04281 - 财政年份:2022
- 资助金额:
$ 76.32万 - 项目类别:
Discovery Grants Program - Individual
Allosteric Regulation of Actin Capping Protein: Mechanism and Significance
肌动蛋白加帽蛋白的变构调节:机制和意义
- 批准号:
10552651 - 财政年份:2022
- 资助金额:
$ 76.32万 - 项目类别:
Allosteric regulation of human cystathionine beta-synthase
人胱硫醚β-合酶的变构调节
- 批准号:
10602404 - 财政年份:2022
- 资助金额:
$ 76.32万 - 项目类别:
Allosteric regulation of human cystathionine beta-synthase
人胱硫醚β-合酶的变构调节
- 批准号:
10381000 - 财政年份:2022
- 资助金额:
$ 76.32万 - 项目类别:
Structural basis for allosteric regulation of RyR1
RyR1 变构调节的结构基础
- 批准号:
10366087 - 财政年份:2021
- 资助金额:
$ 76.32万 - 项目类别:














{{item.name}}会员




