Pathological Reprogramming of DNA Damage Signaling in Neoplastic Cells
肿瘤细胞中 DNA 损伤信号的病理重编程
基本信息
- 批准号:10301006
- 负责人:
- 金额:$ 46.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-01 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:Antineoplastic AgentsApicalBacteriophagesBindingBiochemicalBiological MarkersCancer Cell GrowthCarcinogenesis MechanismCause of DeathCell Culture TechniquesCell SurvivalCellsCellular AssayChemoresistanceComplexCrystallizationDNA DamageDNA Double Strand BreakDNA RepairDNA biosynthesisDNA lesionDouble Strand Break RepairEarly identificationEngineeringEnvironmental ExposureEnvironmental Risk FactorGenesGeneticGenomeGenome StabilityGenomic InstabilityGenomicsGenotoxic StressGerm CellsGoalsHumanIndividualKnowledgeLeadLesionLibrariesMaintenanceMalignant NeoplasmsMediator of activation proteinMissionModelingMolecularMusMutagenesisMutant Strains MiceMutationOncogenesOncogenicOutcomePathologicPathway interactionsPeptide LibraryPeptidesPermeabilityPhenotypeProblem SolvingProteinsPublic HealthResearchResistanceSignal TransductionSourceStressStructureTestingTherapeuticTherapeutic AgentsTissuesToxic effectTrans-ActivatorsTransgenic MiceUnited States National Institutes of HealthWorkbiophysical techniquescancer cellcancer testis antigencancer therapycarcinogenesisdefined contributiondruggable targetenvironmental agentexperienceexperimental studygenotoxicityhomologous recombinationimprovedin vivoinhibitorinnovationneoplastic cellnew therapeutic targetnovelnovel therapeutic interventionoverexpressionpressurepreventradiation resistancerecruitreplication stressresponsescreeningside effectstress tolerancetargeted treatmenttherapy resistanttumortumor molecular fingerprinttumorigenesistumorigenic
项目摘要
SUMMARY
There are fundamental gaps in our understanding of how neoplastic cells tolerate the oncogenic stress and
intrinsic DNA damage that arises during tumorigenesis, while simultaneously accumulating mutations that fuel
cancer. Unfortunately, the DNA damage tolerance and mutability acquired during carcinogenesis also allow
cancer cells to resist therapy. Filling the current gaps in our knowledge of DNA damage tolerance will allow us
to harness intrinsic and therapy-induced DNA damage to kill cancer cells. Our long-term goal is to solve the
problem of how cancer cells endure oncogenic stress and DNA damage. We recently discovered that cancer
cells commonly depend on aberrant activation of two major genome maintenance pathways (Trans-Lesion
Synthesis or TLS, and Homologous Recombination or HR) for DNA damage tolerance. This reliance on
'pathologically-activated' DNA repair is a new molecular vulnerability of cancer cells and provides opportunities
for highly selective targeted therapies. The objective here is to define signaling mechanisms by which cancer
cells activate TLS and HR. Our central hypothesis is that pathological DNA repair activity sustains cancer cell
growth and confers resistance to therapy. The rationale is that defining the mechanisms of pathologically-
activated DNA repair will reveal therapeutic strategies that target specific vulnerabilities of cancer cells. We
will test our central hypothesis and attain our objectives using the following Specific Aims (SAs): SA1
Elucidate structural basis for RAD18 activation by MAGE-A4. SA2 Define contribution of pathologically-
activated Trans-Lesion Synthesis (TLS) to oncogenic stress tolerance and carcinogenesis in vivo.
SA3 Define novel mechanism by which Homologous Recombination (HR) is pathologically activated via
HORMAD1 in cancer. SA1 will use biophysical methods and new peptide probes to elucidate the mechanism
by which MAGE-A4 interacts with RAD18. In SA2 mutant mice lacking Rad18 (the apical mediator of TLS) or
mice overexpressing MAGE-A4 (a cancer-specific activator of TLS) will be used to determine how TLS impacts
tumorigenesis and the genomic landscape of oncogene-driven cancers in vivo. For SA3 we will use cell
culture models to determine how the cancer/testes antigen HORMAD1 (which is aberrantly over-expressed in
cancer cells) signals activation of DSB repair, oncogenic stress tolerance and radioresistance. We propose
innovative new solutions to the important problems of how oncogenic stress tolerance and mutability arise,
drive carcinogenesis, and lead to therapy resistance. The proposed work is significant because we will provide
new paradigms for genome maintenance that are relevant to environmental exposures, mutagenesis,
tumorigenesis and cancer therapy in humans. This work will lead to novel therapeutic strategies that target
DNA damage tolerance specifically in cancer cells, thereby enhancing the efficacy and selectivity of existing
anti-cancer agents.
总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kenneth Hugh Pearce其他文献
Kenneth Hugh Pearce的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kenneth Hugh Pearce', 18)}}的其他基金
Discovery of allosteric activators of phospholipase C-gamma2 to treat Alzheimer's disease
发现用于治疗阿尔茨海默病的磷脂酶 C-gamma2 变构激活剂
- 批准号:
10901007 - 财政年份:2023
- 资助金额:
$ 46.33万 - 项目类别:
A high-throughput platform to identify selective allosteric inhibitors of the PLC-y isozymes
用于鉴定 PLC-y 同工酶选择性变构抑制剂的高通量平台
- 批准号:
10185322 - 财政年份:2021
- 资助金额:
$ 46.33万 - 项目类别:
A high-throughput platform to identify selective allosteric inhibitors of the PLC-y isozymes
用于鉴定 PLC-y 同工酶选择性变构抑制剂的高通量平台
- 批准号:
10399533 - 财政年份:2021
- 资助金额:
$ 46.33万 - 项目类别:
A high-throughput platform to identify selective allosteric inhibitors of the PLC-y isozymes
用于鉴定 PLC-y 同工酶选择性变构抑制剂的高通量平台
- 批准号:
10598548 - 财政年份:2021
- 资助金额:
$ 46.33万 - 项目类别:
Pathological Reprogramming of DNA Damage Signaling in Neoplastic Cells
肿瘤细胞中 DNA 损伤信号的病理重编程
- 批准号:
10530649 - 财政年份:2019
- 资助金额:
$ 46.33万 - 项目类别:
Establishing MAGE-A4/RAD18 as a novel cancer-specific chemotherapeutic target
将 MAGE-A4/RAD18 确立为新型癌症特异性化疗靶点
- 批准号:
10132267 - 财政年份:2019
- 资助金额:
$ 46.33万 - 项目类别:
Establishing MAGE-A4/RAD18 as a novel cancer-specific chemotherapeutic target
将 MAGE-A4/RAD18 确立为新型癌症特异性化疗靶点
- 批准号:
10596489 - 财政年份:2019
- 资助金额:
$ 46.33万 - 项目类别:
Establishing MAGE-A4/RAD18 as a novel cancer-specific chemotherapeutic target
将 MAGE-A4/RAD18 确立为新型癌症特异性化疗靶点
- 批准号:
10363652 - 财政年份:2019
- 资助金额:
$ 46.33万 - 项目类别:
Establishing MAGE-A4/RAD18 as a novel cancer-specific chemotherapeutic target
将 MAGE-A4/RAD18 确立为新型癌症特异性化疗靶点
- 批准号:
9905492 - 财政年份:2019
- 资助金额:
$ 46.33万 - 项目类别:
相似国自然基金
FGF8通过Ras/MEK/ERK信号通路调控apical ES结构影响精子生成的机制研究
- 批准号:81801519
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Changes in apical cochlear mechanics after cochlear implantation
人工耳蜗植入后耳蜗顶端力学的变化
- 批准号:
10730981 - 财政年份:2023
- 资助金额:
$ 46.33万 - 项目类别:
Structural diversity of ceramide moiety responsible for apical membrane function of bladder transitional epithelial cells
负责膀胱移行上皮细胞顶膜功能的神经酰胺部分的结构多样性
- 批准号:
23K08792 - 财政年份:2023
- 资助金额:
$ 46.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Establishment of photodynamic diagnosis for apical periodontitis based on 5-ALA fluorescence live imaging
基于5-ALA荧光实时成像的根尖周炎光动力诊断方法的建立
- 批准号:
23K09188 - 财政年份:2023
- 资助金额:
$ 46.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Epithelial apical membrane polarization, morphogenesis, and regulation of gene expression
上皮顶膜极化、形态发生和基因表达调控
- 批准号:
BB/X000575/1 - 财政年份:2023
- 资助金额:
$ 46.33万 - 项目类别:
Research Grant
Unveiling Functional Roles of Apical Surface Interactions Between Opposing Cell Layers
揭示相对细胞层之间顶端表面相互作用的功能作用
- 批准号:
10629101 - 财政年份:2023
- 资助金额:
$ 46.33万 - 项目类别:
Evaluation of Trigeminal Ganglia Sensory Neuronal Population/s Mediating MIF-Induced Anti-Nociception in a Model of Apical Periodontitis.
根尖周炎模型中三叉神经节感觉神经元群介导 MIF 诱导的抗伤害感受的评估。
- 批准号:
10822712 - 财政年份:2023
- 资助金额:
$ 46.33万 - 项目类别:
Cell-type specific assembly of apical extracellular matrices
顶端细胞外基质的细胞类型特异性组装
- 批准号:
10749768 - 财政年份:2023
- 资助金额:
$ 46.33万 - 项目类别:
Exploring the role of phosphoinositides in the trafficking of proteins to the apical complex in the malaria parasite Plasmodium falciparum.
探索磷酸肌醇在疟原虫恶性疟原虫顶复合体蛋白质运输中的作用。
- 批准号:
495093 - 财政年份:2023
- 资助金额:
$ 46.33万 - 项目类别:
Operating Grants
Étude du rôle de la phosphatase de phosphoinositides SAC1 dans le trafic de protéines au complexe apical chez le parasite de la malaria Plasmodium falciparum
疟疾疟原虫顶端寄生虫复合物中磷酸肌醇磷酸酶 SAC1 的研究
- 批准号:
486094 - 财政年份:2022
- 资助金额:
$ 46.33万 - 项目类别:
Studentship Programs
Illuminating apical extracellular matrix structure and biogenesis
阐明顶端细胞外基质结构和生物发生
- 批准号:
10654029 - 财政年份:2022
- 资助金额:
$ 46.33万 - 项目类别:














{{item.name}}会员




