Pathophysiology Informed Biomarkers of Treatment Response in Early Psychosis (PIB)
病理生理学为早期精神病 (PIB) 治疗反应提供生物标志物
基本信息
- 批准号:10915211
- 负责人:
- 金额:$ 49.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The introduction of Coordinated Specialty Care (CSC) has transformed the standard of care and
elevated treatment outcome goals for young individuals experiencing the initial stages of a
psychotic illness (EP). The response to treatment for EP individuals receiving CSC, however,
remains highly variable. A substantial proportion show minimal symptom reduction despite
receiving the full range of evidence-based practices comprising this treatment model. Currently,
clinicians have no way to predict which EP individuals entering CSC will respond to treatment
and published data show that expert clinicians perform no better than chance. Early
identification of treatment non-responders has very high clinical significance and would inform
and enhance clinical decision making during the first few months of care. Surprisingly, little
research has been conducted on baseline predictors of treatment outcomes in EP individuals
entering CSC. During the past two decades, considerable progress has been made using
neuroimaging to investigate pathophysiological processes during the early phases of illness.
Furthermore, limited data suggest that fMRI measures of brain activity and PET measures of
increased dopamine synthesis are related to treatment outcomes in EP. We have recently
demonstrated in a moderately large sample of EP patients entering CSC that the ability to
activate the frontal parietal (FP) cognitive control network (measured using fMRI during the AX-
CPT task) is a significant predictor of who will meet responder criterion after one year of CSC.
We propose to replicate and extend this result by examining the predictive ability of this and two
other promising MRI based measures linked to pathophysiological processes related to
psychosis: 1) free water diffusion tensor imaging (FW) - a putative biomarker of
neuroinflammation that is increased in EP individuals, and 2) midbrain neuromelanin (NM)
scans, which index midbrain dopamine, shown to be decreased in Parkinson's disease and
increased in schizophrenia. Each of these measures will be used individually to predict
responder status for EP participants entering CSC. In addition to these analyses we will use
novel deep learning methods to optimize the prediction of treatment response in EP individuals
entering CSC and to obtain new insights into the mechanisms underlying these effects. Our goal
is to leverage recent progress in the development of MRI based imaging biomarkers to develop
a precision medicine tool that can identify early psychosis patients entering CSC who are at
high risk for non-response and thereby inform treatment decision making for all patients in order
to optimize the recovery of young individuals following the onset of psychotic illness.
协调专科护理(CSC)的引入改变了护理标准,
提高治疗结果的目标,为年轻人经历的初始阶段,
精神病(EP)。然而,接受CSC的EP个体对治疗的反应,
仍然高度可变。相当大比例的患者表现出轻微的症状减轻,
接受包括这种治疗模式在内的全方位循证实践。目前,
临床医生无法预测进入CSC的EP个体将对治疗产生反应
已发表的数据显示,专家临床医生的表现并不比偶然更好。早期
识别治疗无应答者具有非常高的临床意义,
并在最初几个月的护理中加强临床决策。令人惊讶的是,小
已经对EP个体治疗结果的基线预测因子进行了研究
进入CSC。在过去的二十年里,
神经影像学研究疾病早期的病理生理过程。
此外,有限的数据表明,大脑活动的fMRI测量和PET测量,
多巴胺合成增加与EP的治疗结果有关。我们最近
在进入CSC的EP患者的中等规模样本中证明,
激活额顶叶(FP)认知控制网络(在AX-
CPT任务)是一个显着的预测谁将满足反应标准后,一年的CSC。
我们建议复制和扩展这一结果,通过检查的预测能力,这两个
其他基于MRI的有前景的措施与病理生理过程相关,
精神病:1)游离水扩散张量成像(FW)-一种假定的生物标志物,
在EP个体中增加的神经炎症,和2)中脑神经黑色素(NM)
扫描显示,中脑多巴胺的指数在帕金森病中减少,
精神分裂症的发病率上升。每一项指标都将单独用于预测
进入CSC的EP受试者的应答者状态。除了这些分析,我们还将使用
新的深度学习方法,以优化EP个体的治疗反应预测
进入CSC,并获得这些影响的机制的新见解。我们的目标
是利用基于MRI的成像生物标志物的最新进展,
一种精确的医学工具,可以识别进入CSC的早期精神病患者,
无应答的高风险,从而为所有患者制定治疗决策提供信息,
以优化年轻人在精神病发作后的康复。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Data augmentation with Mixup: Enhancing performance of a functional neuroimaging-based prognostic deep learning classifier in recent onset psychosis.
- DOI:10.1016/j.nicl.2022.103214
- 发表时间:2022
- 期刊:
- 影响因子:4.2
- 作者:Smucny, Jason;Shi, Ge;Lesh, Tyler A.;Carter, Cameron S.;Davidson, Ian
- 通讯作者:Davidson, Ian
Are We There Yet? Predicting Conversion to Psychosis Using Machine Learning.
我们到了吗?
- DOI:10.1176/appi.ajp.20220973
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Smucny,Jason;Davidson,Ian;Carter,CameronS
- 通讯作者:Carter,CameronS
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cameron S. Carter其他文献
Maternal Immune Activation in Macaques Associated With Alterations in Functional Brain Connectivity
- DOI:
10.1016/j.biopsych.2021.02.446 - 发表时间:
2021-05-01 - 期刊:
- 影响因子:
- 作者:
Roza Vlasova;Oscar Miranda-Dominguez;Darrick Sturgeon;Eric Earl;Julian Sergej Benedikt Ramirez;Eric Feczko;Amy Ryan;Casey Hogrefe;Jeffrey Bennett;Martin Styner;Melissa Bauman;David Amaral;Cameron S. Carter;Damien Fair - 通讯作者:
Damien Fair
Oxytocin and complex social behavior: species comparisons.
催产素和复杂的社会行为:物种比较。
- DOI:
- 发表时间:
1993 - 期刊:
- 影响因子:0
- 作者:
J. Winslow;Lawrence E. Shapiro;Cameron S. Carter;T. R. Insel - 通讯作者:
T. R. Insel
Dysfunctional Alpha Modulation as a Mechanism of Working Memory Impairment in Serious Mental Illness
- DOI:
10.1016/j.bpsc.2024.07.022 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Molly A. Erickson;Megan A. Boudewyn;Kurt Winsler;Charlotte Li;Deanna M. Barch;Cameron S. Carter;Michael J. Frank;James M. Gold;Angus W. MacDonald;John D. Ragland;Steven M. Silverstein;Andrew Yonelinas;Steven J. Luck - 通讯作者:
Steven J. Luck
545. Effects of tDCS on Cognitive Control and Cortical Network Oscillations in Schizophrenia
- DOI:
10.1016/j.biopsych.2017.02.1153 - 发表时间:
2017-05-15 - 期刊:
- 影响因子:
- 作者:
Katherine Scangos;Brooke Roberts;J. Daniel Ragland;Charan Ranganath;Cameron S. Carter - 通讯作者:
Cameron S. Carter
Cognitive dysfunction in psychiatric disorders: characteristics, causes and the quest for improved therapy
精神障碍中的认知功能障碍:特征、原因及寻求改进疗法
- DOI:
10.1038/nrd3628 - 发表时间:
2012-02-01 - 期刊:
- 影响因子:101.800
- 作者:
Mark J. Millan;Yves Agid;Martin Brüne;Edward T. Bullmore;Cameron S. Carter;Nicola S. Clayton;Richard Connor;Sabrina Davis;Bill Deakin;Robert J. DeRubeis;Bruno Dubois;Mark A. Geyer;Guy M. Goodwin;Philip Gorwood;Thérèse M. Jay;Marian Joëls;Isabelle M. Mansuy;Andreas Meyer-Lindenberg;Declan Murphy;Edmund Rolls;Bernd Saletu;Michael Spedding;John Sweeney;Miles Whittington;Larry J. Young - 通讯作者:
Larry J. Young
Cameron S. Carter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cameron S. Carter', 18)}}的其他基金
Pathophysiology Informed Biomarkers of Treatment Response in Early Psychosis (PIB)
病理生理学为早期精神病 (PIB) 治疗反应提供生物标志物
- 批准号:
10194614 - 财政年份:2020
- 资助金额:
$ 49.37万 - 项目类别:
Pathophysiology Informed Biomarkers of Treatment Response in Early Psychosis (PIB)
病理生理学为早期精神病 (PIB) 治疗反应提供生物标志物
- 批准号:
10394304 - 财政年份:2020
- 资助金额:
$ 49.37万 - 项目类别:
Pathophysiology Informed Biomarkers of Treatment Response in Early Psychosis (PIB)
病理生理学为早期精神病 (PIB) 治疗反应提供生物标志物
- 批准号:
10612356 - 财政年份:2020
- 资助金额:
$ 49.37万 - 项目类别:
Pathophysiology Informed Biomarkers of Treatment Response in Early Psychosis (PIB)
病理生理学为早期精神病 (PIB) 治疗反应提供生物标志物
- 批准号:
10060889 - 财政年份:2020
- 资助金额:
$ 49.37万 - 项目类别:
Effects of DLPFC tDCS on Cognition, Oscillations and GABA Levels in Schizophrenia
DLPFC tDCS 对精神分裂症认知、振荡和 GABA 水平的影响
- 批准号:
10448414 - 财政年份:2019
- 资助金额:
$ 49.37万 - 项目类别:
Effects of DLPFC tDCS on Cognition, Oscillations and GABA Levels in Schizophrenia
DLPFC tDCS 对精神分裂症认知、振荡和 GABA 水平的影响
- 批准号:
10670819 - 财政年份:2019
- 资助金额:
$ 49.37万 - 项目类别:
Effects of DLPFC tDCS on Cognition, Oscillations and GABA Levels in Schizophrenia
DLPFC tDCS 对精神分裂症认知、振荡和 GABA 水平的影响
- 批准号:
10017323 - 财政年份:2019
- 资助金额:
$ 49.37万 - 项目类别:
Effects of DLPFC tDCS on Cognition, Oscillations and GABA Levels in Schizophrenia
DLPFC tDCS 对精神分裂症认知、振荡和 GABA 水平的影响
- 批准号:
10219922 - 财政年份:2019
- 资助金额:
$ 49.37万 - 项目类别:
UC Davis Conte Center: Neuroimmune Mechanisms of Psychiatric Disorders
加州大学戴维斯分校康特中心:精神疾病的神经免疫机制
- 批准号:
10378728 - 财政年份:2015
- 资助金额:
$ 49.37万 - 项目类别:
UC Davis Conte Center: Administrative Core
加州大学戴维斯分校康特中心:行政核心
- 批准号:
10592301 - 财政年份:2015
- 资助金额:
$ 49.37万 - 项目类别:
相似海外基金
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
- 批准号:
2327473 - 财政年份:2024
- 资助金额:
$ 49.37万 - 项目类别:
Standard Grant
PIDD-MSK: Physics-Informed Data-Driven Musculoskeletal Modelling
PIDD-MSK:物理信息数据驱动的肌肉骨骼建模
- 批准号:
EP/Y027930/1 - 财政年份:2024
- 资助金额:
$ 49.37万 - 项目类别:
Fellowship
Discovering early biomarkers of Alzheimer's disease using genetic and physics-informed networks
利用遗传和物理信息网络发现阿尔茨海默病的早期生物标志物
- 批准号:
2904538 - 财政年份:2024
- 资助金额:
$ 49.37万 - 项目类别:
Studentship
CAREER: Informed Testing — From Full-Field Characterization of Mechanically Graded Soft Materials to Student Equity in the Classroom
职业:知情测试 – 从机械分级软材料的全场表征到课堂上的学生公平
- 批准号:
2338371 - 财政年份:2024
- 资助金额:
$ 49.37万 - 项目类别:
Standard Grant
Rapid, Scalable, and Joint Assessment of Seismic Multi-Hazards and Impacts: From Satellite Images to Causality-Informed Deep Bayesian Networks
地震多重灾害和影响的快速、可扩展和联合评估:从卫星图像到因果关系深度贝叶斯网络
- 批准号:
2242590 - 财政年份:2024
- 资助金额:
$ 49.37万 - 项目类别:
Standard Grant
Collaborative Research: Embedding Material-Informed History through Fractional Calculus State Variable Formulation
合作研究:通过分数阶微积分状态变量公式嵌入材料丰富的历史
- 批准号:
2345437 - 财政年份:2024
- 资助金额:
$ 49.37万 - 项目类别:
Standard Grant
MEtaGenome-informed Antimicrobial resistance Surveillance: Harnessing long-read sequencing for an analytical, indicator and risk assessment framework
基于 MEtaGenome 的抗菌药物耐药性监测:利用长读长测序构建分析、指标和风险评估框架
- 批准号:
MR/Y034457/1 - 财政年份:2024
- 资助金额:
$ 49.37万 - 项目类别:
Research Grant
CAREER: Physics-Informed Deep Learning for Understanding Earthquake Slip Complexity
职业:基于物理的深度学习用于理解地震滑动的复杂性
- 批准号:
2339996 - 财政年份:2024
- 资助金额:
$ 49.37万 - 项目类别:
Continuing Grant
CAREER: Advanced and Uncertainty-Informed Site Investigation
职业:高级和不确定性现场调查
- 批准号:
2340596 - 财政年份:2024
- 资助金额:
$ 49.37万 - 项目类别:
Standard Grant
Collaborative Research: Embedding Material-Informed History through Fractional Calculus State Variable Formulation
合作研究:通过分数阶微积分状态变量公式嵌入材料丰富的历史
- 批准号:
2345438 - 财政年份:2024
- 资助金额:
$ 49.37万 - 项目类别:
Standard Grant














{{item.name}}会员




