New Catalysts and Strategies for Selective C–H Functionalization and Cycloaddition Reactions
选择性 C–H 官能化和环加成反应的新催化剂和策略
基本信息
- 批准号:10622182
- 负责人:
- 金额:$ 50.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAcidsAddressAminationAminesAreaBiologicalCatalysisChemicalsChemistryDiels Alder reactionFoundationsFutureGoalsHydrogen BondingHydroxylationInvestmentsLaboratoriesMedicalMetalsMethodsNitrogenOrganic SynthesisOutcomePharmaceutical PreparationsPharmacologic SubstancePreparationReactionResearchSiteSodium ChlorideStructureVariantcancer therapycatalystcycloadditiondirect applicationdriving forcedrug discoveryflexibilityinventionnovelnovel drug classprogramssmall moleculesmall molecule therapeuticssuccessvirtual
项目摘要
Project Summary/Abstract
Organic synthesis is a rate-limiting factor in drug discovery, and consequently, advances in synthetic methods
relevant to bioactive molecule preparation can be a powerful driving force to accelerate the discovery of new
small molecule therapeutics for unmet medical needs. Research in the Hilinski laboratory is focused on
addressing unsolved challenges in catalysis and synthesis that have immediate relevance to the contemporary
practice of drug discovery, and that have the potential for broad impact as widespread platforms for new reaction
discovery and/or synthetic planning. We are also invested in the direct application of small molecule synthesis
to drug discovery, in collaborative projects that use small molecules to engage new biological targets for cancer
treatment. This MIRA application outlines our recent endeavors and future plans in two areas: (1) catalytic,
selective C–H functionalization, and (2) novel cycloaddition reactions. In the first area, research in the field of
intermolecular, site selective C(sp3)–H hydroxylation and amination has advanced considerably in recent years,
but has reached a major barrier in the desire to transition from substrate-controlled selectivity to catalyst
controlled selectivity. To address these and other challenges, we have established a program in organocatalytic
atom-transfer C–H functionalization and over the past several years have shown that our catalytic platform,
focused on iminium salt and amine catalysts, competes with or exceeds metal-catalyzed methods in reactivity
and selectivity, and also that it has the flexibility to enable multiple types of atom transfer (i.e. both hydroxylation
and amination). Having established this foundation, we are now beginning to better understand the unique
mechanistic details of these reactions and the influence of catalyst structure on reactivity and selectivity. Our
goals over the next five years are to use amine catalysis to override substrate control of C–H hydroxylation site
selectivity and to develop enantioselective C–H hydroxylation methods, and to use iminium catalysis to expand
both the scope and selectivity among benzylic, unactivated tertiary, and unactivated secondary C–H bonds in
late-stage C–H amination applications. Distinct from our research on C–H functionalization, we have also
established a program on the invention of new regioselective and stereoselective cycloaddition reactions
targeting nitrogen-containing heterocycles and carbocycles appended to nitrogen-containing heterocycles, two
major structural motifs in drug discovery. Described in this application is our recent discovery of Lewis acid
catalysis of a virtually unexplored variant of the Diels-Alder reaction – one that uses vinylazaarenes as
dienophiles. Over the next five years, we intend to pursue our long-term goal of establishing this as a strategy-
level synthetic approach by expanding this chemistry to include hetero Diels-Alder reactions to form azaarene-
appended aliphatic nitrogen heterocycles, and by developing enantioselective variants. The results of these
future research plans will enable an expansion of the chemical space that can be explored for drug discovery.
项目摘要/摘要
有机合成是药物发现的一个速度限制因素,因此合成方法的进步
与生物活性分子相关的制备可以成为加速发现新的
针对未得到满足的医疗需求的小分子疗法。希林斯基实验室的研究重点是
应对与当代有直接关系的催化和合成领域尚未解决的挑战
药物发现的实践,并有可能作为新反应的广泛平台产生广泛影响
发现和/或综合规划。我们还投资于小分子合成的直接应用。
到药物发现,在使用小分子参与癌症新生物靶点的合作项目中
治疗。这个Mira应用概述了我们最近在两个领域的努力和未来计划:(1)催化,
选择性C-H官能化;(2)新颖的环加成反应。在第一个领域,研究领域的
分子间、位选择性C(SP3)-H羟基化和胺化反应近年来取得了显著进展,
但在从底物控制的选择性向催化剂过渡的愿望上已经达到了一个主要障碍
受控选择性。为了应对这些和其他挑战,我们在有机催化方面建立了一个项目
原子转移C-H官能化和过去几年的研究表明,我们的催化平台,
专注于金属盐和胺催化剂,在反应活性方面与金属催化方法竞争或超过金属催化方法
和选择性,而且它还可以灵活地实现多种类型的原子转移(即,羟基化
和胺化)。在建立了这个基础之后,我们现在开始更好地理解
这些反应的机理细节以及催化剂结构对反应活性和选择性的影响。我们的
未来五年的目标是使用胺催化来取代C-H羟基化位点的底物控制
选择性和开发对映体选择性的C-H羟基化方法,并利用亚胺催化扩张
苯基、未活化的叔基和未活化的次级C-H键之间的范围和选择性
后期C-H胺化应用。与我们对C-H官能化的研究不同,我们还
制定了关于发明新的区域选择性和立体选择性环加成反应的方案
针对含氮杂环和附加在含氮杂环上的碳环,两个
药物发现中的主要结构主题。在本申请中描述的是我们最近发现的Lewis酸
Diels-Alder反应的一种几乎未被探索的变体的催化作用-使用乙烯基氮杂芳烃作为
嗜双烯者。在未来五年,我们打算将此作为一项战略来实现我们的长期目标-
通过扩展该化学以包括杂化Diels-Alder反应以形成氮芳烃的水平合成方法-
添加了脂肪族氮杂环,并开发了对映体选择性变体。这些研究的结果
未来的研究计划将使可以为药物发现探索的化学空间得到扩大。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Kenneth Hilinski其他文献
Michael Kenneth Hilinski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Kenneth Hilinski', 18)}}的其他基金
Organocatalytic Site-Selective C-H Bond Functionalization
有机催化位点选择性 C-H 键功能化
- 批准号:
9363624 - 财政年份:2017
- 资助金额:
$ 50.79万 - 项目类别:
Organocatalytic Site-Selective C-H Bond Functionalization
有机催化位点选择性 C-H 键功能化
- 批准号:
10190962 - 财政年份:2017
- 资助金额:
$ 50.79万 - 项目类别:
相似国自然基金
具有抗癌活性的天然产物金霉酸(Aureolic acids)全合成与选择性构建2-脱氧糖苷键
- 批准号:22007039
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
海洋放线菌来源聚酮类化合物Pteridic acids生物合成机制研究
- 批准号:
- 批准年份:2019
- 资助金额:10.0 万元
- 项目类别:省市级项目
手性Lewis Acids催化的分子内串联1,5-氢迁移/环合反应及其在构建结构多样性手性含氮杂环化合物中的应用
- 批准号:21372217
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
对空气稳定的新型的有机金属Lewis Acids催化剂制备、表征与应用研究
- 批准号:21172061
- 批准年份:2011
- 资助金额:30.0 万元
- 项目类别:面上项目
钛及含钛Lewis acids促臭氧/过氧化氢体系氧化性能的广普性、高效性及其机制
- 批准号:21176225
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
基于Zip Nucleic Acids引物对高度降解和低拷贝DNA检材的STR分型研究
- 批准号:81072511
- 批准年份:2010
- 资助金额:31.0 万元
- 项目类别:面上项目
海洋天然产物Makaluvic acids 的全合成及其对南海鱼虱存活的影响
- 批准号:30660215
- 批准年份:2006
- 资助金额:21.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Lipid nanoparticle-mediated Inhalation delivery of anti-viral nucleic acids
脂质纳米颗粒介导的抗病毒核酸的吸入递送
- 批准号:
502577 - 财政年份:2024
- 资助金额:
$ 50.79万 - 项目类别:
CAREER: Highly Rapid and Sensitive Nanomechanoelectrical Detection of Nucleic Acids
职业:高度快速、灵敏的核酸纳米机电检测
- 批准号:
2338857 - 财政年份:2024
- 资助金额:
$ 50.79万 - 项目类别:
Continuing Grant
Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
- 批准号:
BB/Y006380/1 - 财政年份:2024
- 资助金额:
$ 50.79万 - 项目类别:
Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
- 批准号:
24K17112 - 财政年份:2024
- 资助金额:
$ 50.79万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Synthetic analogues based on metabolites of omega-3 fatty acids protect mitochondria in aging hearts
基于 omega-3 脂肪酸代谢物的合成类似物可保护衰老心脏中的线粒体
- 批准号:
477891 - 财政年份:2023
- 资助金额:
$ 50.79万 - 项目类别:
Operating Grants
Metabolomic profiles of responders and non-responders to an omega-3 fatty acids supplementation.
对 omega-3 脂肪酸补充剂有反应和无反应者的代谢组学特征。
- 批准号:
495594 - 财政年份:2023
- 资助金额:
$ 50.79万 - 项目类别:
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
- 批准号:
23K04668 - 财政年份:2023
- 资助金额:
$ 50.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integrated understanding and manipulation of hypoxic cellular functions by artificial nucleic acids with hypoxia-accumulating properties
具有缺氧累积特性的人工核酸对缺氧细胞功能的综合理解和操纵
- 批准号:
23H02086 - 财政年份:2023
- 资助金额:
$ 50.79万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
- 批准号:
23K06918 - 财政年份:2023
- 资助金额:
$ 50.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
- 批准号:
23K05758 - 财政年份:2023
- 资助金额:
$ 50.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




