Translating Hyperpolarized 13C Metabolic MRI to Predict Renal Tumor Aggressiveness
转化超极化 13C 代谢 MRI 来预测肾肿瘤的侵袭性
基本信息
- 批准号:10741013
- 负责人:
- 金额:$ 7.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:AddressBenignBiological MarkersBiopsyCalibrationCardiovascular DiseasesCessation of lifeChronic Kidney FailureClinicalClinical ProtocolsClinical ResearchDataData SetDetectionDiagnosisDiagnosticDiseaseEarly DiagnosisEvaluationExcisionFutureGlycolysisGoalsHistologyHumanImageImaging TechniquesImaging technologyIncidenceIncidental DiscoveriesIndolentInvestigationKidneyKidney NeoplasmsLactate DehydrogenaseLinkLocal TherapyMagnetic Resonance ImagingMalignant - descriptorMalignant NeoplasmsMalignant neoplasm of kidneyMapsMeasuresMediatingMetabolicMetabolismMethodsModelingMotivationNeoplasm MetastasisNoiseOperative Surgical ProceduresPathologyPathway interactionsPatient SelectionPatientsPerformanceProductionPrognosisPyruvatePyruvate Metabolism PathwayRF coilReference StandardsRenal Cell CarcinomaRenal carcinomaReproducibilityRiskRunningSafetyScanningSignal TransductionTestingTimeTranslatingUnnecessary SurgeryValidationVisualizationWorkclinical applicationcohortcostimaging approachimaging biomarkerimprovedinnovationkinetic modelmagnetic resonance imaging biomarkermetabolic imagingmetabolomicsmolecular imagingnovelovertreatmentpre-clinicalradiomicsresponserisk stratificationstandard of caresurgical risktemporal measurementtumortumor metabolism
项目摘要
Project summary:
This project aims to clinically translate hyperpolarized (HP) 13C pyruvate MRI as an innovative metabolic imaging
approach for noninvasive prediction of renal tumor aggressiveness, an unmet clinical need. Our study is in direct
response to PAR 19-264 that supports “The optimization, application and validation of emerging imaging or
biomarker approaches targeted specifically for clinical application”, with the goals to “reduce overdiagnosis”, and
“identify lethal cancers from non-lethal disease”. Our project is motivated by the rising incidence of renal tumors,
largely due to the increased utilization of imaging with incidental discovery of many localized tumors. These
include both benign renal tumors and malignant renal cell carcinomas (RCCs). Current imaging or biopsies
cannot reliably differentiate between benign tumors, low grade RCCs, and high grade RCCs. The diagnostic
ambiguity has led to an overdiagnosis of many indolent tumors which are unnecessarily treated by surgery with
surgical risks, and importantly, increased risk of chronic kidney disease and associated cardiovascular disease.
Notably, the increased detection of RCCs has not translated into a decrease in cancer specific death. Therefore,
there is a significant unmet need for novel imaging markers that can improve the risk stratification of
localized renal tumors to guide patient management. HP 13C MRI is an emerging imaging technology that
allows real-time pathway-specific investigation of metabolic processes that were previously inaccessible by
imaging. Our pre-clinical data in orthotopic RCC tumor models have shown that HP 13C pyruvate MRI can
quantitatively map the increased pyruvate-to-lactate metabolism via the lactate dehydrogenase pathway, an
imageable biomarker which is strongly linked to the presence of RCC and its aggressiveness. We have also
demonstrated the feasibility of acquiring dynamic HP 13C pyruvate MRI of renal tumors in patients, with excellent
metabolic contrast between tumor and normal kidney. Building upon these promising preliminary data, we now
propose to investigate for the first time the value of HP 13C pyruvate MRI for risk stratifying localized renal tumors.
Aim 1- we will optimize the MRI acquisition strategies for renal tumor metabolic evaluation. Aim 2- we will
investigate the value of HP 13C pyruvate MRI for differentiating between benign tumors, low grade RCCs, and
high grade RCCs. We will also compare HP 13C data to advanced 1H MRI and radiomics analyses, and develop
multi-parametric model to assess whether it can improve the prediction. Aim 3- we will determine the repeatability
of HP 13C pyruvate MRI of renal tumors, and evaluate new analysis methods to further improve the robustness
of metabolism quantification. Successful completion of this project will provide the first data on the value of HP
13C pyruvate MRI in predicting renal tumor aggressiveness, and will pave the way for future larger clinical studies.
HP 13C pyruvate has already been shown to be safe, and we envision the 13C metabolic imaging markers to be
incorporated into a state-of-the-art multi-parametric MRI to reduce the current overdiagnosis of indolent tumors
while enabling the early detection of aggressive RCCs, and help safely select patients for active surveillance.
项目概要:
该项目旨在临床上将超极化(HP)13 C丙酮酸盐MRI转化为创新的代谢成像
一种非侵入性预测肾肿瘤侵袭性的方法,这是一种未满足的临床需求。我们的研究直接
响应PAR 19-264,支持“新兴成像或
专门针对临床应用的生物标志物方法”,目标是“减少过度诊断”,以及
“从非致命性疾病中鉴别出致命性癌症”。我们的项目是由肾脏肿瘤发病率上升的动机,
这主要是由于增加了对成像的利用,偶然发现了许多局部肿瘤。这些
包括良性肾肿瘤和恶性肾细胞癌(RCC)。当前成像或活检
不能可靠地区分良性肿瘤、低级别RCC和高级别RCC。诊断
不明确性导致了许多惰性肿瘤的过度诊断,这些肿瘤不必要地通过手术治疗,
手术风险,更重要的是,慢性肾脏疾病和相关心血管疾病的风险增加。
值得注意的是,RCC检测的增加并没有转化为癌症特异性死亡的减少。因此,我们认为,
对于可以改善以下疾病的危险分层的新的成像标记物存在显著的未满足的需求:
局部肾肿瘤,以指导患者管理。HP 13 C MRI是一种新兴的成像技术,
允许对代谢过程进行实时特定途径的研究,
显像我们在原位RCC肿瘤模型中的临床前数据表明,HP 13 C丙酮酸MRI可以
通过乳酸脱氢酶途径定量绘制增加的乳酸-乳酸代谢图,
可成像的生物标志物,其与RCC的存在及其侵袭性密切相关。我们还
证明了获得患者肾肿瘤的动态HP 13 C丙酮酸盐MRI的可行性,
肿瘤和正常肾脏之间的代谢对比。基于这些有希望的初步数据,我们现在
建议首次研究HP 13 C丙酮酸盐MRI对局部肾肿瘤风险分层的价值。
目标1-我们将优化MRI采集策略,用于肾肿瘤代谢评估。目标2-我们将
探讨HP 13 C丙酮酸MRI在鉴别良性肿瘤、低级别RCC和
高等级RCC。我们还将比较HP 13 C数据与先进的1H MRI和放射组学分析,
多参数模型,以评估它是否可以提高预测。目标3-我们将确定重复性
的HP 13 C丙酮酸盐MRI肾肿瘤,并评估新的分析方法,以进一步提高鲁棒性
代谢量化。成功完成这一项目将提供有关惠普价值的第一批数据
13 C丙酮酸MRI在预测肾肿瘤侵袭性方面的应用,并将为未来更大规模的临床研究铺平道路。
HP 13 C丙酮酸盐已经被证明是安全的,我们设想13 C代谢成像标记物是
纳入最先进的多参数MRI中,以减少当前对惰性肿瘤的过度诊断
同时能够早期发现侵袭性RCC,并帮助安全地选择患者进行主动监测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peder Eric Zufall Larson其他文献
Peder Eric Zufall Larson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peder Eric Zufall Larson', 18)}}的其他基金
Translating Hyperpolarized 13C Metabolic MRI to Predict Renal Tumor Aggressiveness
转化超极化 13C 代谢 MRI 来预测肾肿瘤的侵袭性
- 批准号:
10543731 - 财政年份:2021
- 资助金额:
$ 7.48万 - 项目类别:
Translating Hyperpolarized 13C Metabolic MRI to Predict Renal Tumor Aggressiveness
转化超极化 13C 代谢 MRI 来预测肾肿瘤的侵袭性
- 批准号:
10318924 - 财政年份:2021
- 资助金额:
$ 7.48万 - 项目类别:
Hyperpolarized 13C Metabolic MRI for Noninvasive Monitoring of Kidney Injury
超极化 13C 代谢 MRI 用于无创监测肾损伤
- 批准号:
10288911 - 财政年份:2021
- 资助金额:
$ 7.48万 - 项目类别:
Hyperpolarized 13C Metabolic MRI for Noninvasive Monitoring of Kidney Injury
超极化 13C 代谢 MRI 用于无创监测肾损伤
- 批准号:
10449286 - 财政年份:2021
- 资助金额:
$ 7.48万 - 项目类别:
Translating Hyperpolarized 13C Metabolic MRI to Predict Renal Tumor Aggressiveness
转化超极化 13C 代谢 MRI 来预测肾肿瘤的侵袭性
- 批准号:
10597761 - 财政年份:2021
- 资助金额:
$ 7.48万 - 项目类别:
Novel Ultrashort Echo Time Sequences for Brain MRI
用于脑 MRI 的新型超短回波时间序列
- 批准号:
9112765 - 财政年份:2016
- 资助金额:
$ 7.48万 - 项目类别:
Hyperpolarized C-13 Diffusion MRI Measures of Cellular Transport and Metabolism
细胞运输和代谢的超极化 C-13 扩散 MRI 测量
- 批准号:
8928613 - 财政年份:2014
- 资助金额:
$ 7.48万 - 项目类别:
Hyperpolarized C-13 Diffusion MRI Measures of Cellular Transport and Metabolism
细胞运输和代谢的超极化 C-13 扩散 MRI 测量
- 批准号:
9058043 - 财政年份:2014
- 资助金额:
$ 7.48万 - 项目类别:
Hyperpolarized C-13 Diffusion MRI Measures of Cellular Transport and Metabolism
细胞运输和代谢的超极化 C-13 扩散 MRI 测量
- 批准号:
8632695 - 财政年份:2014
- 资助金额:
$ 7.48万 - 项目类别:
Hyperpolarized C-13 MR Pulse Sequence Developments for Novel Contrast
用于新型对比度的超极化 C-13 MR 脉冲序列开发
- 批准号:
8327061 - 财政年份:2011
- 资助金额:
$ 7.48万 - 项目类别:
相似海外基金
Genome analysis-based prediction model development for response to stereotactic radiosurgery in benign brain tumors
基于基因组分析的预测模型开发,用于良性脑肿瘤立体定向放射外科治疗的反应
- 批准号:
23K08495 - 财政年份:2023
- 资助金额:
$ 7.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Clinical breast cancer risk prediction models for women with a high-risk benign breast diagnosis
高风险良性乳腺诊断女性的临床乳腺癌风险预测模型
- 批准号:
10719777 - 财政年份:2023
- 资助金额:
$ 7.48万 - 项目类别:
Environmentally Benign Precise Transformations of Alkenes by Chiral Chalcogenide Catalysts
手性硫属化物催化剂对环境无害的烯烃精确转化
- 批准号:
22KJ2498 - 财政年份:2023
- 资助金额:
$ 7.48万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Learners to LeAders in benign Urology, benign Nephrology, and non-Cancer Hematology
良性泌尿外科、良性肾脏病学和非癌症血液学领域的学习者和领导者
- 批准号:
10726042 - 财政年份:2023
- 资助金额:
$ 7.48万 - 项目类别:
The role of estrogen receptor alpha in prostatic fibrosis contributing to benign prostatic hyperplasia
雌激素受体α在导致良性前列腺增生的前列腺纤维化中的作用
- 批准号:
10607151 - 财政年份:2023
- 资助金额:
$ 7.48万 - 项目类别:
Development of a medical device to resolve benign esophageal stricture by heating and traction
开发通过加热和牵引解决良性食管狭窄的医疗设备
- 批准号:
23H03765 - 财政年份:2023
- 资助金额:
$ 7.48万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of benign/malignant differentiation method for thyroid follicular tumor using organoids
利用类器官开发甲状腺滤泡性肿瘤良恶性鉴别方法
- 批准号:
23K08075 - 财政年份:2023
- 资助金额:
$ 7.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mechanisms of p53 Engagement and Action at the Benign-to-Malignant Transition in Sporadic Tumorigenesis
p53在散发性肿瘤发生良性向恶性转变中的参与和作用机制
- 批准号:
10720034 - 财政年份:2023
- 资助金额:
$ 7.48万 - 项目类别:
I-Corps: Mitigating Multidrug Resistant Bacterial Infections with Biocompatible and Environmentally Benign Nanoantibiotics
I-Corps:利用生物相容性且对环境无害的纳米抗生素减轻多重耐药细菌感染
- 批准号:
2306943 - 财政年份:2023
- 资助金额:
$ 7.48万 - 项目类别:
Standard Grant
Identifying the role of the gut microbiome in the etiology of benign breast disease
确定肠道微生物组在良性乳腺疾病病因学中的作用
- 批准号:
10359959 - 财政年份:2022
- 资助金额:
$ 7.48万 - 项目类别: