Predicting Tissue and Functional Outcome in Acute Stroke
预测急性中风的组织和功能结果
基本信息
- 批准号:10568740
- 负责人:
- 金额:$ 62.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAlgorithmsArtificial IntelligenceAttentionCaringCerebral InfarctionCerebrovascular DisordersCessation of lifeClinicalClinical DataClinical TrialsCollaborationsComputer softwareDataDecision MakingDisease ProgressionDisparateEtiologyFunctional disorderGoalsHemorrhageImageIndividualInfarctionInterventionIschemiaIschemic StrokeLeadLearningLocationMagnetic Resonance ImagingMapsMedicalMedicineMethodsMinorModelingOutcomePathway interactionsPatient SelectionPatientsPerformancePerfusionPopulationProcessProspective cohortProtocols documentationReperfusion TherapyResearch PersonnelRiskSafetySiteSpeedStrokeTechniquesTestingThrombectomyTimeTissuesTrainingTriageWorkX-Ray Computed Tomographyacute strokeartificial intelligence methodclinical practicecohortconvolutional neural networkcostdata streamsdeep learningdeep learning modeldeep neural networkendovascular thrombectomyexperiencefollow-upfunctional outcomesfunctional statusimaging studyimprovedlearning strategyneural networkneuroimagingoutcome predictionpatient populationperfusion imagingpredictive modelingrandomized, clinical trialsstroke patientstroke trialstooltransfer learningtreatment effect
项目摘要
Abstract
Stroke is a disabling cerebrovascular disease that causes 5.5 million deaths each
year globally. The disease progresses rapidly and irreversibly, leaving a narrow
time window for intervention. Existing methods for patient selection for endo-
vascular thrombectomy are suboptimal, based exclusively on simple linear
threshold models applied to neuroimaging. Deep learning has shown great
promise in recent years for many medical applications. We believe that it can
be used to integrate imaging and non-imaging data in a seamless and data-
driven way to improve stroke triage and clinical trials.
The goal of this project is to develop deep convolutional neural network
approaches to the initial MR and CT imaging, the most commonly performed
stroke imaging protocol in acute ischemic stroke patients, and to combine this
with non-imaging clinical information. We will train networks to predict the
most likely final tissue and clinical outcomes under 2 extreme conditions
(major reperfusion and minimal reperfusion) to estimate the treatment effect at
the individual level. Next, we use the methods and learning from this first study
to train deep learning models without using contrast perfusion imaging, which
will improve safety, cost, and time-to-treatment. Finally, we will test the
generalizability and explainability of these AI methods in external cohorts
which differ in terms of population and scanner types, including testing on data
from mobile CT scanners.
Accomplishment of these aims will fundamentally shift the acute stroke
paradigm beyond the relatively simplistic mismatch concept and replace it with
a data-driven method that takes into account the immense amount of imaging
and clinical data that can be brought to the stroke decision-making process.
The methods developed will improve long-term outcomes and reduce of the
cost of stroke care worldwide.
摘要
中风是一种致残性脑血管疾病,每种疾病导致550万人死亡
全球年份。这种疾病发展迅速且不可逆转,留下了一个狭窄的
干预的时间窗口。现有的内窥镜手术患者选择方法
血管血栓切除术是次优的,完全基于简单的线性
阈值模型应用于神经成像。深度学习显示出很好的效果
近年来在许多医疗领域应用前景看好。我们相信,它可以
用于将成像和非成像数据无缝集成在一起
推动改善卒中分诊和临床试验。
本项目的目标是开发深度卷积神经网络。
最常用的初始MR和CT成像方法
急性缺血性卒中患者的卒中成像方案,并将其结合
具有非影像临床信息。我们将训练网络来预测
在两种极端条件下最有可能的最终组织和临床结果
(主要再灌注和最小再灌注)以评估治疗效果。
个人层面。接下来,我们使用第一项研究的方法和经验
在不使用对比灌注成像的情况下训练深度学习模型,这
将提高安全性、成本和治疗时间。最后,我们将测试
这些人工智能方法在外部队列中的概括性和可解释性
在总体和扫描仪类型方面不同,包括对数据的测试
从移动CT扫描仪。
这些目标的实现将从根本上改变急性中风
超越相对简单的不匹配概念,代之以
一种数据驱动的方法,考虑了海量的成像
以及可以被带到中风决策过程中的临床数据。
所开发的方法将改善长期结果并减少
全球中风护理的成本。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregory George Zaharchuk其他文献
Gregory George Zaharchuk的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gregory George Zaharchuk', 18)}}的其他基金
AI-Enhanced Brain PET Imaging for Alzheimer's Disease
AI 增强型大脑 PET 成像治疗阿尔茨海默病
- 批准号:
10670483 - 财政年份:2022
- 资助金额:
$ 62.82万 - 项目类别:
Cerebrovascular Reserve Imaging with Simultaneous PET/MRI Using Arterial Spin Labeling and Deep Learning
使用动脉自旋标记和深度学习同时进行 PET/MRI 脑血管储备成像
- 批准号:
10181176 - 财政年份:2020
- 资助金额:
$ 62.82万 - 项目类别:
Cerebrovascular Reserve Imaging with Simultaneous PET/MRI Using Arterial Spin Labeling and Deep Learning
使用动脉自旋标记和深度学习同时进行 PET/MRI 脑血管储备成像
- 批准号:
9789276 - 财政年份:2018
- 资助金额:
$ 62.82万 - 项目类别:
Cerebrovascular Reserve Imaging with Simultaneous PET/MRI Using Arterial Spin Labeling and Deep Learning
使用动脉自旋标记和深度学习同时进行 PET/MRI 脑血管储备成像
- 批准号:
10205063 - 财政年份:2018
- 资助金额:
$ 62.82万 - 项目类别:
Oxygenation Fingerprinting with MRI for Ischemic Stroke
缺血性中风的 MRI 氧合指纹图谱
- 批准号:
8827866 - 财政年份:2014
- 资助金额:
$ 62.82万 - 项目类别:
Oxygenation Fingerprinting with MRI for Ischemic Stroke
缺血性中风的 MRI 氧合指纹图谱
- 批准号:
8684656 - 财政年份:2014
- 资助金额:
$ 62.82万 - 项目类别:
USING ARTERIAL SPIN LABEL AND PWI TO MEASURE QUANTITATIVE CBF
使用动脉旋转标签和 PWI 定量测量 CBF
- 批准号:
8362921 - 财政年份:2011
- 资助金额:
$ 62.82万 - 项目类别:
Imaging Collaterals in Acute Stroke (iCAS)
急性中风的侧枝循环成像 (iCAS)
- 批准号:
9314645 - 财政年份:2009
- 资助金额:
$ 62.82万 - 项目类别:
相似海外基金
CAREER: CAS-Climate: Forecast-informed Flexible Reservoir System Modeling Enabled by Artificial Intelligence Algorithms Using Subseasonal-to-Seasonal Hydroclimatological Forecasts
职业:CAS-气候:利用次季节到季节水文气候预测的人工智能算法实现基于预测的灵活水库系统建模
- 批准号:
2236926 - 财政年份:2023
- 资助金额:
$ 62.82万 - 项目类别:
Continuing Grant
Artificial intelligence algorithms to predict risk of injury in racehorses.
预测赛马受伤风险的人工智能算法。
- 批准号:
LP210200798 - 财政年份:2023
- 资助金额:
$ 62.82万 - 项目类别:
Linkage Projects
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221742 - 财政年份:2022
- 资助金额:
$ 62.82万 - 项目类别:
Standard Grant
Performance-Based Earthquake Engineering 2.0: Machine-Learning and Artificial Intelligence Algorithms for seismic hazard and vulnerability.
基于性能的地震工程 2.0:地震灾害和脆弱性的机器学习和人工智能算法。
- 批准号:
2765246 - 财政年份:2022
- 资助金额:
$ 62.82万 - 项目类别:
Studentship
The 'risk of risk': remodelling artificial intelligence algorithms for predicting child abuse.
“风险中的风险”:重塑人工智能算法以预测虐待儿童行为。
- 批准号:
ES/R00983X/2 - 财政年份:2022
- 资助金额:
$ 62.82万 - 项目类别:
Research Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221741 - 财政年份:2022
- 资助金额:
$ 62.82万 - 项目类别:
Standard Grant
Developing a platform for deep phenotyping of heart failure with preserved ejection fraction using raw, widely-available, multi-modality data and artificial intelligence algorithms
使用原始、广泛可用的多模态数据和人工智能算法,开发一个对射血分数保留的心力衰竭进行深度表型分析的平台
- 批准号:
10683803 - 财政年份:2022
- 资助金额:
$ 62.82万 - 项目类别:
Early-assymptomatic-dementia prediction based on a white-matter biomarker using Artificial Intelligence algorithms
使用人工智能算法基于白质生物标志物的早期无症状痴呆症预测
- 批准号:
460558 - 财政年份:2022
- 资助金额:
$ 62.82万 - 项目类别:
Concluding 50 Years of Research in Wireless Communications: Algorithms for Artificial Intelligence and Optimization in Networks Beyond 5G and Thereafter
总结无线通信 50 年的研究:5G 及以后网络中的人工智能和优化算法
- 批准号:
RGPIN-2022-04417 - 财政年份:2022
- 资助金额:
$ 62.82万 - 项目类别:
Discovery Grants Program - Individual
De novo development of small CRISPR-Cas proteins using artificial intelligence algorithms
使用人工智能算法从头开发小型 CRISPR-Cas 蛋白
- 批准号:
10544772 - 财政年份:2022
- 资助金额:
$ 62.82万 - 项目类别: