Next Generation Brain PET Imaging
下一代脑 PET 成像
基本信息
- 批准号:10279862
- 负责人:
- 金额:$ 56.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AgeAirArchitectureArtificial IntelligenceBrainBrain imagingCerebrovascular CirculationCharacteristicsClinicalClinical DataClinical TrialsCyclotronsDataData SetDementiaDiagnosisDiagnosticDiagnostic ImagingDiscipline of Nuclear MedicineDiseaseDisease ProgressionDoseEpilepsyFDA approvedFunctional Magnetic Resonance ImagingFutureGenderGeneticGenetic MarkersGlioblastomaGoalsGoldHumanImageLinkLogisticsMachine LearningMagnetic Resonance ImagingMapsMeasurementMeasuresMedicalMedical GeneticsMedical ImagingMetabolicMetabolismMethodsModalityModelingPatientsPerformancePhenotypePhysiciansPopulationPositron-Emission TomographyPrevalenceProtocols documentationProviderRadiationRadiation Dose UnitRadiology SpecialtyReaderRecording of previous eventsRecurrenceRiskRisk FactorsRunningRural CommunitySiteSpecific qualifier valueSpin LabelsStructureTechnologyTracerTrainingTravelWateracute strokebasechronic strokeconvolutional neural networkcostdeep learningdisease natural historyfluorodeoxyglucosefluorodeoxyglucose positron emission tomographygenetic informationimaging biomarkerimaging modalityimaging studyimprovedmetabolic imagingmultimodal datamultimodalityneural networknext generationpatient populationpatient safetyprospectivequantitative imagingradiologistradiotracersexstroke patienttargeted imagingtumorunderserved community
项目摘要
Abstract
Gold-standard quantitative imaging studies are often difficult to implement,
limited by financial and logistical issues, or expose the patient to unnecessary
risks. Deep learning has shown great promise in recent years for many medical
applications; one use is to synthesize improved images. Such image trans-
formation methods offer the potential to improve the quality, value, and
accessibility of medical imaging.
The goal of this project is to develop deep convolutional neural network
approaches to FDG PET imaging, the most commonly performed clinical brain-
focused PET study in the USA. Using simultaneous PET/MRI, we will train
networks to produce diagnostic PET images from ultra-low dose PET and MR
images. We will explore the three reimbursed clinical indications for this
imaging modality (tumor recurrence, dementia, and epilepsy) using both
quantitative metrics and repeated reader studies to assess equivalence and
evaluate possible AI generalization bias related to simultaneity, scanner type,
age, gender, and disease prevalence.
Next, we will evaluate whether we can move beyond ultra-low dose and remove
the radiation dose altogether, synthesizing FDG brain PET images from MR
inputs only, relying on the information in multi-modal functional MRI. Finally,
we will assess whether we can use deep networks to combine imaging and non-
imaging data such as clinical and genetic information to further improve image
transformation and predict future images and image-based biomarkers.
Significantly reducing or even eliminating the need for radiation to produce
brain FDG PET images would be truly transformative while the ability to
predict the future will enable personalized radiology and enhance our ability to
perform clinical trials.
摘要
黄金标准的定量成像研究通常很难实施,
受限于财务和后勤问题,或使患者面临不必要的风险
风险。近年来,深度学习在许多医学领域显示出了巨大的前景
应用程序;其中一个用途是合成改进的图像。这样的形象跨越了
形成方法提供了提高质量、价值和
医学成像的可获得性。
本项目的目标是开发深度卷积神经网络。
FDG PET成像的方法,最常见的临床脑-
专注于美国的PET研究。使用同步的PET/MRI,我们将训练
利用超低剂量PET和MR生成诊断PET图像的网络
图像。我们将探讨这三种报销的临床适应症。
使用两者的成像方式(肿瘤复发、痴呆和癫痫)
量化指标和重复的读者研究,以评估等价性和
评估与同时性、扫描仪类型
年龄、性别和疾病流行率。
接下来,我们将评估我们是否可以超越超低剂量并移除
从MR合成FDG脑PET图像
仅输入,依赖于多模式功能磁共振中的信息。最后,
我们将评估是否可以使用深度网络将成像和非
临床和遗传信息等影像数据,进一步改善影像
转换和预测未来的图像和基于图像的生物标记物。
显著减少甚至消除产生辐射的需要
脑FDG PET图像将真正实现变革,同时能够
预测未来将实现个性化放射学并增强我们的能力
进行临床试验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregory George Zaharchuk其他文献
Gregory George Zaharchuk的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gregory George Zaharchuk', 18)}}的其他基金
Predicting Tissue and Functional Outcome in Acute Stroke
预测急性中风的组织和功能结果
- 批准号:
10568740 - 财政年份:2023
- 资助金额:
$ 56.46万 - 项目类别:
AI-Enhanced Brain PET Imaging for Alzheimer's Disease
AI 增强型大脑 PET 成像治疗阿尔茨海默病
- 批准号:
10670483 - 财政年份:2022
- 资助金额:
$ 56.46万 - 项目类别:
Cerebrovascular Reserve Imaging with Simultaneous PET/MRI Using Arterial Spin Labeling and Deep Learning
使用动脉自旋标记和深度学习同时进行 PET/MRI 脑血管储备成像
- 批准号:
10181176 - 财政年份:2020
- 资助金额:
$ 56.46万 - 项目类别:
Cerebrovascular Reserve Imaging with Simultaneous PET/MRI Using Arterial Spin Labeling and Deep Learning
使用动脉自旋标记和深度学习同时进行 PET/MRI 脑血管储备成像
- 批准号:
9789276 - 财政年份:2018
- 资助金额:
$ 56.46万 - 项目类别:
Cerebrovascular Reserve Imaging with Simultaneous PET/MRI Using Arterial Spin Labeling and Deep Learning
使用动脉自旋标记和深度学习同时进行 PET/MRI 脑血管储备成像
- 批准号:
10205063 - 财政年份:2018
- 资助金额:
$ 56.46万 - 项目类别:
Oxygenation Fingerprinting with MRI for Ischemic Stroke
缺血性中风的 MRI 氧合指纹图谱
- 批准号:
8827866 - 财政年份:2014
- 资助金额:
$ 56.46万 - 项目类别:
Oxygenation Fingerprinting with MRI for Ischemic Stroke
缺血性中风的 MRI 氧合指纹图谱
- 批准号:
8684656 - 财政年份:2014
- 资助金额:
$ 56.46万 - 项目类别:
USING ARTERIAL SPIN LABEL AND PWI TO MEASURE QUANTITATIVE CBF
使用动脉旋转标签和 PWI 定量测量 CBF
- 批准号:
8362921 - 财政年份:2011
- 资助金额:
$ 56.46万 - 项目类别:
Imaging Collaterals in Acute Stroke (iCAS)
急性中风的侧枝循环成像 (iCAS)
- 批准号:
9314645 - 财政年份:2009
- 资助金额:
$ 56.46万 - 项目类别:
相似国自然基金
湍流和化学交互作用对H2-Air-H2O微混燃烧中NO生成的影响研究
- 批准号:51976048
- 批准年份:2019
- 资助金额:61.0 万元
- 项目类别:面上项目
相似海外基金
COMPAS: co integration of microelectronics and photonics for air and water sensors
COMPAS:微电子学和光子学的共同集成,用于空气和水传感器
- 批准号:
10108154 - 财政年份:2024
- 资助金额:
$ 56.46万 - 项目类别:
EU-Funded
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 56.46万 - 项目类别:
Standard Grant
SBIR Phase I: High-Efficiency Liquid Desiccant Regenerator for Desiccant Enhanced Evaporative Air Conditioning
SBIR 第一阶段:用于干燥剂增强蒸发空调的高效液体干燥剂再生器
- 批准号:
2335500 - 财政年份:2024
- 资助金额:
$ 56.46万 - 项目类别:
Standard Grant
Catalyzing Sustainable Air Travel: Unveiling Consumer Willingness to Pay for Sustainable Aviation Fuel through Information Treatment in Choice Experiment and Cross-Country Analysis
促进可持续航空旅行:通过选择实验和跨国分析中的信息处理揭示消费者支付可持续航空燃油的意愿
- 批准号:
24K16365 - 财政年份:2024
- 资助金额:
$ 56.46万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Phenotypic and lineage diversification after key innovation(s): multiple evolutionary pathways to air-breathing in labyrinth fishes and their allies
合作研究:关键创新后的表型和谱系多样化:迷宫鱼及其盟友呼吸空气的多种进化途径
- 批准号:
2333683 - 财政年份:2024
- 资助金额:
$ 56.46万 - 项目类别:
Continuing Grant
Collaborative Research: Phenotypic and lineage diversification after key innovation(s): multiple evolutionary pathways to air-breathing in labyrinth fishes and their allies
合作研究:关键创新后的表型和谱系多样化:迷宫鱼及其盟友呼吸空气的多种进化途径
- 批准号:
2333684 - 财政年份:2024
- 资助金额:
$ 56.46万 - 项目类别:
Continuing Grant
CRII: CSR: Towards an Edge-enabled Software-Defined Vehicle Framework for Dynamic Over-the-Air Updates
CRII:CSR:迈向支持边缘的软件定义车辆框架,用于动态无线更新
- 批准号:
2348151 - 财政年份:2024
- 资助金额:
$ 56.46万 - 项目类别:
Standard Grant
Smoldering coarse woody debris and air quality
阴燃粗木质碎片和空气质量
- 批准号:
IM240100016 - 财政年份:2024
- 资助金额:
$ 56.46万 - 项目类别:
Mid-Career Industry Fellowships
Simulating Urban Air Pollution In The Lab
在实验室模拟城市空气污染
- 批准号:
MR/Y020014/1 - 财政年份:2024
- 资助金额:
$ 56.46万 - 项目类别:
Fellowship
Development of a low-pressure loss air purification device using rotating porous media and a proposal for its use in ventilation systems
使用旋转多孔介质的低压损失空气净化装置的开发及其在通风系统中的使用建议
- 批准号:
24K17404 - 财政年份:2024
- 资助金额:
$ 56.46万 - 项目类别:
Grant-in-Aid for Early-Career Scientists