Human NLRP11 function in non-canonical inflammasome activation by bacterial pathogen LPS
人类NLRP11在细菌病原体LPS非典型炎症小体激活中的作用
基本信息
- 批准号:10563477
- 负责人:
- 金额:$ 53.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-06 至 2028-02-29
- 项目状态:未结题
- 来源:
- 关键词:Adaptor Signaling ProteinBacteriaBindingCASP1 geneCASP4 geneCASP5 geneCaspaseCell DeathCell Death InductionCell surfaceCellsCommunitiesComplexCytosolDataDependenceDimerizationFamilyGlycolipidsGoalsHumanImmune systemIn VitroInfectionInfection ControlInflammasomeInnate Immune SystemLigandsLipopolysaccharidesListeria monocytogenesMacrophageMediatingMembraneMicellesModificationMolecularMusMutationMyelogenousPathogenesisPathway interactionsPattern recognition receptorPhysiologicalPositioning AttributePrimatesProcessProteinsRestRoleShigella flexneriSignal TransductionSpecificityTLR4 geneTestingTransfectionVariantcytosolic receptorgenome wide screeninsightinterestmembermicrobialmolecular domainmutantpathogenpathogenic bacteriaresponsesensor
项目摘要
The gram-negative bacterial outer membrane glycolipid lipopolysaccharide (LPS) is recognized by both
the cell surface TLR4 complex and cytosolic sensors. Recognition of bacterial LPS in the cytosol induces the
activation of the caspase-4/caspase-5 (CASP4/5, human) or CASP11 (mouse) inflammasome, signaling
platforms that trigger pyroptotic cell death. The dogma for recognition of bacterial LPS, based on the simplest
interpretation of non-physiological data showing that CASP4/11 bind bacterial LPS in vitro, is that cytosolic
bacterial LPS is directly sensed by CASP4/11 rather than by a pattern recognition receptor. We recently found
that NLRP11, a poorly characterized primate-specific member of a family of pattern recognition receptors, is a
pattern recognition receptor for cytosolic bacterial LPS.
We found that efficient cell death induced by cytosolic bacterial LPS in human macrophages depends on
NLRP11 function in the CASP4 inflammasome pathway. We initially identified NLRP11 in a genome-wide
screen of human myeloid-derived cells for factors that promote cell death during infection with the gram-
negative bacterial pathogen Shigella flexneri. We propose to leverage our findings to uncover mechanisms of
NLRP11 function in cytosolic bacterial LPS-triggered activation of the human CASP4 inflammasome, including
the role of variants of S. flexneri LPS in this process.
1. Define determinants of host-pathogen interaction of NLRP11 with bacterial LPS and caspase(s)
and of NLRP11 specificity for caspase(s). We will define the molecular domains and sequences that
mediate bacterial LPS interaction with NLRP11 and NLRP11 with CASP4.
2. Determine mechanisms of host NLRP11-mediated activation of CASP4 in response to cytosolic
bacterial pathogens and cytosolic bacterial LPS. We will test our hypothesis that resting state NLRP11 is
autoinhibited and activated NLRP11 triggers CASP4 activation by proximity-induced dimerization and will test
the requirements for bacterial LPS in NLRP11 activation.
3. Test whether host NLRP11 recognition is modulated by specific LPS modifications or modes of
LPS delivery by gram-negative bacterial pathogens. We will determine the role of selected modifications of
LPS from S. flexneri on its recognition by NLRP11 and on NLRP11-dependent CASP4 activation and will test
our hypothesis that NLRP11 is most critical to CASP4 responses when S. flexneri LPS is in micelle-reducing
conditions.
Our focus is to determine mechanisms of cytosolic bacterial LPS-triggered NLRP11-mediated activation of
the human CASP4 inflammasome. We are uniquely positioned to accomplish these goals. Our insights are
likely to have broad implications for gram-negative pathogenesis and thus be of great interest to the
pathogenesis community.
革兰氏阴性细菌外膜糖脂脂多糖(LPS)被两者识别
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marcia B Goldberg其他文献
Marcia B Goldberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marcia B Goldberg', 18)}}的其他基金
Infectious Disease and Basic Microbiological Mechanisms
传染病和基本微生物机制
- 批准号:
9411265 - 财政年份:2016
- 资助金额:
$ 53.09万 - 项目类别:
Bacterial cell envelope in polar positioning of autotransporter proteins
自转运蛋白极性定位中的细菌细胞包膜
- 批准号:
8917850 - 财政年份:2014
- 资助金额:
$ 53.09万 - 项目类别:
Bacterial cell envelope in polar positioning of autotransporter proteins
自转运蛋白极性定位中的细菌细胞包膜
- 批准号:
8638264 - 财政年份:2014
- 资助金额:
$ 53.09万 - 项目类别:
Shigella repression of innate immunity early during infection
志贺氏菌在感染早期抑制先天免疫
- 批准号:
8853815 - 财政年份:2014
- 资助金额:
$ 53.09万 - 项目类别:
Shigella repression of innate immunity early during infection
志贺氏菌在感染早期抑制先天免疫
- 批准号:
8772174 - 财政年份:2014
- 资助金额:
$ 53.09万 - 项目类别:
The cellular filopodia mechanism in Shigella membrane protrusion formation
志贺氏菌膜突起形成的细胞丝状伪足机制
- 批准号:
8607891 - 财政年份:2013
- 资助金额:
$ 53.09万 - 项目类别:
The cellular filopodia mechanism in Shigella membrane protrusion formation
志贺氏菌膜突起形成的细胞丝状伪足机制
- 批准号:
8430385 - 财政年份:2013
- 资助金额:
$ 53.09万 - 项目类别:
相似国自然基金
Segmented Filamentous Bacteria激活宿主免疫系统抑制其拮抗菌 Enterobacteriaceae维持菌群平衡及其机制研究
- 批准号:81971557
- 批准年份:2019
- 资助金额:65.0 万元
- 项目类别:面上项目
电缆细菌(Cable bacteria)对水体沉积物有机污染的响应与调控机制
- 批准号:51678163
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
NPBactID - Differential binding of peptoid functionalized nanoparticles to bacteria for identifying specific strains
NPBactID - 类肽功能化纳米粒子与细菌的差异结合,用于识别特定菌株
- 批准号:
EP/Y029542/1 - 财政年份:2024
- 资助金额:
$ 53.09万 - 项目类别:
Fellowship
Evaluation and application of binding ability between mycotoxin and lactic acid bacteria cell wall components using kinetic analysis.
动力学分析评价霉菌毒素与乳酸菌细胞壁成分结合能力及应用
- 批准号:
22K05515 - 财政年份:2022
- 资助金额:
$ 53.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structural and functional studies of iron uptake ATP-binding cassette transporters (ABC transporters) in Gram-negative bacteria
革兰氏阴性菌中铁摄取 ATP 结合盒转运蛋白(ABC 转运蛋白)的结构和功能研究
- 批准号:
20K22561 - 财政年份:2020
- 资助金额:
$ 53.09万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Investigation of virulence mechanism of Gram-positive bacteria regulated by various RNA binding proteins
不同RNA结合蛋白调控革兰氏阳性菌毒力机制的研究
- 批准号:
19H03466 - 财政年份:2019
- 资助金额:
$ 53.09万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Xenophagy recognizes bacteria through carbohydrate-binding ubiquitin ligase complex
异体吞噬通过碳水化合物结合泛素连接酶复合物识别细菌
- 批准号:
18K07109 - 财政年份:2018
- 资助金额:
$ 53.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on binding mechanism of lactic acid bacteria to the host via anchorless proteins
乳酸菌通过锚定蛋白与宿主结合机制的研究
- 批准号:
18K05405 - 财政年份:2018
- 资助金额:
$ 53.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding DNA-binding by type IV pilins: key event during transformation in naturally competent bacteria
了解 IV 型菌毛蛋白的 DNA 结合:自然感受态细菌转化过程中的关键事件
- 批准号:
MR/P022197/1 - 财政年份:2017
- 资助金额:
$ 53.09万 - 项目类别:
Research Grant
Development of novel caries suppression method targeting polymer binding domain of plaque constituting bacteria
开发针对牙菌斑构成细菌的聚合物结合域的新型防龋方法
- 批准号:
15K20591 - 财政年份:2015
- 资助金额:
$ 53.09万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
The differing biological fates of DNA minor groove-binding (MGB) antibiotics in Gram-negative and Gram-Positive bacteria.
DNA 小沟结合 (MGB) 抗生素在革兰氏阴性和革兰氏阳性细菌中的不同生物学命运。
- 批准号:
BB/K019600/1 - 财政年份:2014
- 资助金额:
$ 53.09万 - 项目类别:
Research Grant
Domoic acid-binding substance found in bacteria isolated from causative diatom of domoic acid
从软骨藻酸致病硅藻中分离出的细菌中发现软骨藻酸结合物质
- 批准号:
23658175 - 财政年份:2011
- 资助金额:
$ 53.09万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research














{{item.name}}会员




