Bio-tribo-corrosion resistant 3D Printed Composites for Load-bearing Implants

用于承重植入物的生物耐摩擦腐蚀 3D 打印复合材料

基本信息

  • 批准号:
    10565931
  • 负责人:
  • 金额:
    $ 32.08万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-02-01 至 2027-01-31
  • 项目状态:
    未结题

项目摘要

Among load-bearing implants, total hip arthroplasty (THA) is probably the most clinically successful intervention. CoCrMo alloy, a wear resistant material of choice, is typically used in femoral heads for THAs. In vivo life of THAs are often reduced due to debris generation, and Co and Cr metal ion release from modular junctions. Management of taper corrosion from trunnions of CoCrMo head and Ti6Al4V stems remain a serious challenge today. Taper corrosion happens primarily due to mechanically assisted crevice corrosion (MACC) along with fretting and galvanic corrosion, and leads to adverse local tissue reactions (ALTR), an immune- mediated biological reaction due to elevated Co and Cr ions. ALTR has profound influence on bone, leading to implant failure, which can result in early revision surgery. Co and Cr ions can also cause other symptoms such as deafness, blindness, and interstitial cell damage resulting in impaired renal functioning. Our application is focused on self-lubricating and self-healing calcium phosphate (CaP) reinforced Ti- or CoCrMo-alloys to minimize bio-tribocorrosion in applications such as trunnions in modular taper interlocks in THAs. CoCrMo-CaP composite will be designed to minimize Co and Cr ion release compared to pure CoCrMo alloy; while Ti alloy- CaP composites will be designed to completely eliminate the release of Co and Cr ions due to corrosion or wear degradation. The objective of this proposed research is to test our central hypothesis that CaP based solid lubricants in Ti or CoCrMo alloys will form an in situ film at the contact surface to minimize bio- tribo-corrosion and reduce metal ion release. The rationale is that once we understand the mechanisms of tribofilm formation and its influence on bio-tribo-corrosion, we can design implants with reduced metal ion release possibility in vivo. Our preliminary data show in situ tribofilm formation with CaP reinforcement in Ti6Al4V or CoCrMo alloys during in vitro bio-tribo- corrosion studies. Presence of tribofilm lowered wear induced damage and minimized metal ion release in vitro. We have three Specific Aims for the proposed program – (1) to understand tribocorrosion mechanism and tribofilm formation in CaP reinforced Ti-alloy matrix composites, and measure their in vitro biological response; (2) to understand tribocorrosion mechanism and tribofilm formation in CaP reinforced CoCrMo composites, and measure their in vitro biological response, and (3) to measure in vivo biological properties of CaP added Ti or CoCrMo alloys.
在承重植入物中,全髋关节置换术(THA)可能是临床应用最广泛的。 成功干预。 CoCrMo 合金是一种首选耐磨材料,通常用于 用于 THA 的股骨头。 THAs 的体内寿命通常会因碎片的产生而缩短,并且 Co 和 Cr 金属离子从模块化连接处释放。耳轴锥度腐蚀的管理 CoCrMo 刀头和 Ti6Al4V 刀杆的加工如今仍然是一个严峻的挑战。锥度腐蚀 发生的主要原因是机械辅助缝隙腐蚀 (MACC) 以及微动磨损 和电偶腐蚀,并导致局部组织不良反应(ALTR),这是一种免疫- 由于 Co 和 Cr 离子升高而介导的生物反应。 ALTR 影响深远 骨,导致种植体失败,从而可能导致早期修复手术。 Co 和 Cr 离子可以 还会引起其他症状,例如耳聋、失明和间质细胞损伤,从而导致 肾功能受损。我们的应用专注于自润滑和自修复 磷酸钙 (CaP) 增强 Ti 或 CoCrMo 合金,可最大限度地减少生物摩擦腐蚀 应用,例如 THA 中模块化锥形联锁中的耳轴。 CoCrMo-CaP复合材料将 与纯 CoCrMo 合金相比,旨在最大限度地减少 Co 和 Cr 离子的释放;而钛合金- CaP 复合材料的设计旨在完全消除由于以下原因而释放的 Co 和 Cr 离子: 腐蚀或磨损退化。 这项研究的目的是检验我们的中心假设,即基于 CaP 的固体 Ti 或 CoCrMo 合金中的润滑剂将在接触表面形成原位薄膜,以最大限度地减少生物效应 摩擦腐蚀并减少金属离子释放。理由是,一旦我们了解了 摩擦膜形成的机制及其对生物摩擦腐蚀的影响,我们可以设计 体内金属离子释放可能性降低的植入物。我们的初步数据显示 体外生物摩擦过程中 Ti6Al4V 或 CoCrMo 合金中 CaP 强化的摩擦膜形成 腐蚀研究。摩擦膜的存在降低了磨损引起的损坏并最大限度地减少了金属离子 体外释放。我们对拟议计划有三个具体目标 – (1) 理解 CaP增强钛合金基复合材料中的摩擦腐蚀机理和摩擦膜形成, 并测量它们的体外生物反应; (2)了解摩擦腐蚀机理 CaP 增强 CoCrMo 复合材料中摩擦膜的形成,并测量其体外生物学 (3)测量CaP添加Ti或CoCrMo合金的体内生物学特性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

AMIT BANDYOPADHYAY其他文献

AMIT BANDYOPADHYAY的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('AMIT BANDYOPADHYAY', 18)}}的其他基金

Bio-tribo-corrosion resistant 3D Printed Composites for Load-bearing Implants
用于承重植入物的生物耐摩擦腐蚀 3D 打印复合材料
  • 批准号:
    10631737
  • 财政年份:
    2022
  • 资助金额:
    $ 32.08万
  • 项目类别:
Bio-tribo-corrosion resistant 3D Printed Composites for Load-bearing Implants
用于承重植入物的生物耐摩擦腐蚀 3D 打印复合材料
  • 批准号:
    10331780
  • 财政年份:
    2021
  • 资助金额:
    $ 32.08万
  • 项目类别:
Bio-tribo-corrosion resistant 3D Printed Composites for Load-bearing Implants
用于承重植入物的生物耐摩擦腐蚀 3D 打印复合材料
  • 批准号:
    10772484
  • 财政年份:
    2021
  • 资助金额:
    $ 32.08万
  • 项目类别:
3D Printed Surface Modified Porous Metal Coatings for Load-bearing Implants
用于承重植入物的 3D 打印表面改性多孔金属涂层
  • 批准号:
    9314997
  • 财政年份:
    2015
  • 资助金额:
    $ 32.08万
  • 项目类别:

相似海外基金

Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    $ 32.08万
  • 项目类别:
    Studentship
CAREER: Emergence of in-liquid structures in metallic alloys by nucleation and growth
职业:通过成核和生长在金属合金中出现液态结构
  • 批准号:
    2333630
  • 财政年份:
    2024
  • 资助金额:
    $ 32.08万
  • 项目类别:
    Continuing Grant
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
  • 批准号:
    2415119
  • 财政年份:
    2024
  • 资助金额:
    $ 32.08万
  • 项目类别:
    Continuing Grant
CAREER: Understanding Interface Controlled Mechanisms of Recrystallization in Microstructurally Complex Mg Alloys
职业:了解微观结构复杂镁合金中界面控制的再结晶机制
  • 批准号:
    2339387
  • 财政年份:
    2024
  • 资助金额:
    $ 32.08万
  • 项目类别:
    Continuing Grant
CAS: Designing Copper-based Multi-metallic Single-atom Alloys for Cross Coupling Reactions through Combined Surface Science and Catalytic Investigations
CAS:通过结合表面科学和催化研究设计用于交叉偶联反应的铜基多金属单原子合金
  • 批准号:
    2400227
  • 财政年份:
    2024
  • 资助金额:
    $ 32.08万
  • 项目类别:
    Continuing Grant
Collaborative Research: Dynamics of Short Range Order in Multi-Principal Element Alloys
合作研究:多主元合金中的短程有序动力学
  • 批准号:
    2348956
  • 财政年份:
    2024
  • 资助金额:
    $ 32.08万
  • 项目类别:
    Standard Grant
Towards use-as-manufactured titanium alloys for additive manufacturing
致力于将钛合金用于增材制造
  • 批准号:
    LP210301261
  • 财政年份:
    2024
  • 资助金额:
    $ 32.08万
  • 项目类别:
    Linkage Projects
Innovative Zn alloys with essential mechanical and biofunctional properties
具有基本机械和生物功能特性的创新锌合金
  • 批准号:
    DP240101131
  • 财政年份:
    2024
  • 资助金额:
    $ 32.08万
  • 项目类别:
    Discovery Projects
Next generation titanium alloys for additive manufacturing
用于增材制造的下一代钛合金
  • 批准号:
    FT230100683
  • 财政年份:
    2024
  • 资助金额:
    $ 32.08万
  • 项目类别:
    ARC Future Fellowships
Impact of impurity elements on the corrosion performance of high strength 6xxx aluminium alloys
杂质元素对高强6xxx铝合金腐蚀性能的影响
  • 批准号:
    2906344
  • 财政年份:
    2024
  • 资助金额:
    $ 32.08万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了