Single-cell direct RNA sequencing using electrical zero-mode waveguides and engineered reverse transcriptases

使用电零模式波导和工程逆转录酶进行单细胞直接 RNA 测序

基本信息

  • 批准号:
    10565946
  • 负责人:
  • 金额:
    $ 83.32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-11 至 2024-02-29
  • 项目状态:
    已结题

项目摘要

Progress in genome technologies over the past few decades has delivered a dramatic cost reduction in DNA sequencing and vast increases in read lengths, the latter afforded by development of new single-molecule sequencing technologies. These advances enabled probing regions of the genome that were considered as “dark matter” up until recently, as well as the assembly of new high-quality reference genomes. In addition to genome sequencing, these single-molecule methods have opened up new applications for probing chemical modifications in DNA, by either probing the kinetics of sequencing-by-synthesis using optical waveguides, or by electrically distinguishing modified bases using nanopores. Currently, efforts are made to create robust methods for direct RNA sequencing, so that information about RNA sequence, epigenetic modifications, and quantity, can be obtained. In a single human cell, only a few picograms of RNA and DNA are available, and since epigenetic modifications in these nucleic acids cannot be multiplied, a recognized goal of future sequencing technologies is to reduce the amount of genomic material that can be analyzed at picogram levels. We have recently developed a method for loading picogram-level DNA and RNA into zero-mode waveguides (ZMWs), and have demonstrated DNA sequencing of a long DNA fragment, achieved by fabricating porous ZMWs (PZMWs) in which a porous material was embedded at the ZMW bottoms. However, challenges with the chemistry and longevity of porous materials have limited the throughput of this system. In this proposal, we will develop an entirely new method for direct RNA sequencing that enables quantitative transcriptome analysis and RNA base modification information, requiring only picogram-level input RNA. First, we have developed a new type of ZMW that contains a metal-disk electrode embedded underneath it. Applying voltage across the ZMWs produces an electric field that assists with DNA and RNA capture. These new devices allow vastly increased throughput over the previous generation PZMWs, as well as substantial quality improvements to the data obtained. Second, for the sequencing engine we will employ MarathonRT, an ultra-processive reverse transcriptase that converts RNA molecules to complementary DNA (cDNA) molecules by enzymatic replication robustly and accurately, more so than currently used enzymes used for RNA sequencing. Third, we will employ advanced single-cell RNA extraction and gold-standard RNA quantification methods. Backed by extensive preliminary data, we will integrate MarathonRT as the engine, PtZMWs as the sensitive sequence readers and advanced single-cell sorting and RNA extraction tools, to develop for the first time quantitative RNA expression profiles from truly single-cell material (i.e., no amplification). Additionally, using our ability to follow the replication kinetics by MarathonRT, we will probe chemical modifications preserved in these RNA molecules, such as methyladenine and pseudouridine. Success in this unique approach will revolutionize transcriptome analysis from single-cell material by providing a workflow for epi/transcriptomics at unprecedented sensitivity.
过去几十年基因组技术的进步极大地降低了 DNA 成本 测序和读长的大幅增加,后者是由新的单分子的开发提供的 测序技术。这些进步使得探测基因组区域成为可能 直到最近,“暗物质”以及新的高质量参考基因组的组装。此外 基因组测序,这些单分子方法开辟了化学探测的新应用 通过使用光波导探索边合成边测序的动力学,或者 通过使用纳米孔电区分修饰碱基。目前,正在努力打造强 直接 RNA 测序的方法,以便获得有关 RNA 序列、表观遗传修饰和 数量,即可获得。在单个人类细胞中,只有几皮克的 RNA 和 DNA,并且 由于这些核酸中的表观遗传修饰不能倍增,这是未来的公认目标 测序技术的目的是减少可在皮克水平上分析的基因组材料的数量。 我们最近开发了一种将皮克级 DNA 和 RNA 加载到零模式波导中的方法 (ZMW),并展示了通过制造多孔材料实现的长 DNA 片段的 DNA 测序 ZMW(PZMW),其中 ZMW 底部嵌入多孔材料。然而,挑战 多孔材料的化学性质和寿命限制了该系统的吞吐量。在这个提案中,我们 将开发一种全新的直接 RNA 测序方法,可实现定量转录组分析 和RNA碱基修饰信息,只需要皮克级的输入RNA。首先,我们开发了一个 新型 ZMW,其下方嵌入金属盘电极。在两端施加电压 ZMW 产生有助于 DNA 和 RNA 捕获的电场。这些新设备可以极大地 与上一代 PZMW 相比,吞吐量有所提高,质量也得到了显着提高 获得的数据。其次,对于测序引擎,我们将采用 MarathonRT,一种超处理逆向 通过酶促复制将 RNA 分子转化为互补 DNA (cDNA) 分子的转录酶 稳健且准确,比目前用于 RNA 测序的酶更加强大和准确。第三,我们将聘用 先进的单细胞 RNA 提取和金标准 RNA 定量方法。广泛的支持 初步数据,我们将集成 MarathonRT 作为引擎,PtZMWs 作为敏感序列读取器, 先进的单细胞分选和RNA提取工具,首次开发定量RNA表达 来自真正的单细胞材料的概况(即无扩增)。此外,利用我们的能力来遵循 通过 MarathonRT 的复制动力学,我们将探测这些 RNA 分子中保存的化学修饰, 例如甲基腺嘌呤和假尿苷。这种独特方法的成功将彻底改变转录组 通过以前所未有的灵敏度提供表观/转录组学工作流程,对单细胞材料进行分析。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rapid Identification of DNA Fragments through Direct Sequencing with Electro-Optical Zero-Mode Waveguides.
通过电光零模波导直接测序快速识别 DNA 片段。
  • DOI:
    10.1002/adma.202209376
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Farhangdoust,Fatemeh;Alibakhshi,MohammadAmin;Cheng,Feng;Liang,Wentao;Liu,Yongmin;Wanunu,Meni
  • 通讯作者:
    Wanunu,Meni
Author Correction: Unidirectional single-file transport of full-length proteins through a nanopore.
作者更正:全长蛋白质通过纳米孔的单向单文件传输。
  • DOI:
    10.1038/s41587-023-01995-2
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    46.9
  • 作者:
    Yu,Luning;Kang,Xinqi;Li,Fanjun;Mehrafrooz,Behzad;Makhamreh,Amr;Fallahi,Ali;Foster,JoshuaC;Aksimentiev,Aleksei;Chen,Min;Wanunu,Meni
  • 通讯作者:
    Wanunu,Meni
Semi-quantitative detection of pseudouridine modifications and type I/II hypermodifications in human mRNAs using direct long-read sequencing.
  • DOI:
    10.1038/s41467-023-35858-w
  • 发表时间:
    2023-01-19
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Tavakoli, Sepideh;Nabizadeh, Mohammad;Makhamreh, Amr;Gamper, Howard;McCormick, Caroline A.;Rezapour, Neda K.;Hou, Ya-Ming;Wanunu, Meni;Rouhanifard, Sara H.
  • 通讯作者:
    Rouhanifard, Sara H.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Meni Wanunu其他文献

Meni Wanunu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Meni Wanunu', 18)}}的其他基金

Ion Fountain Nanopore Readers for High-Resolution DNA and RNA Sequencing
用于高分辨率 DNA 和 RNA 测序的 Ion Fountain 纳米孔读数器
  • 批准号:
    10204556
  • 财政年份:
    2021
  • 资助金额:
    $ 83.32万
  • 项目类别:
Single-cell direct RNA sequencing using electrical zero-mode waveguides and engineered reverse transcriptases
使用电零模式波导和工程逆转录酶进行单细胞直接 RNA 测序
  • 批准号:
    10487746
  • 财政年份:
    2021
  • 资助金额:
    $ 83.32万
  • 项目类别:
Ion Fountain Nanopore Readers for High-Resolution DNA and RNA Sequencing
用于高分辨率 DNA 和 RNA 测序的 Ion Fountain 纳米孔读数器
  • 批准号:
    10448254
  • 财政年份:
    2021
  • 资助金额:
    $ 83.32万
  • 项目类别:
Single-cell direct RNA sequencing using electrical zero-mode waveguides and engineered reverse transcriptases
使用电零模式波导和工程逆转录酶进行单细胞直接 RNA 测序
  • 批准号:
    10348785
  • 财政年份:
    2020
  • 资助金额:
    $ 83.32万
  • 项目类别:
Single-cell direct RNA sequencing using electrical zero-mode waveguides and engineered reverse transcriptases
使用电零模式波导和工程逆转录酶进行单细胞直接 RNA 测序
  • 批准号:
    10161799
  • 财政年份:
    2020
  • 资助金额:
    $ 83.32万
  • 项目类别:
Direct picogram DNA and RNA sequencing using nanopore Zero-mode waveguides
使用纳米孔零模波导直接进行皮克 DNA 和 RNA 测序
  • 批准号:
    9914480
  • 财政年份:
    2019
  • 资助金额:
    $ 83.32万
  • 项目类别:
Direct picogram DNA and RNA sequencing using nanopore Zero-mode waveguides
使用纳米孔零模波导直接进行皮克 DNA 和 RNA 测序
  • 批准号:
    9356545
  • 财政年份:
    2016
  • 资助金额:
    $ 83.32万
  • 项目类别:

相似海外基金

How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 83.32万
  • 项目类别:
    Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 83.32万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 83.32万
  • 项目类别:
    Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 83.32万
  • 项目类别:
    Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 83.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 83.32万
  • 项目类别:
    Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 83.32万
  • 项目类别:
    Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 83.32万
  • 项目类别:
    Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
  • 批准号:
    23K00129
  • 财政年份:
    2023
  • 资助金额:
    $ 83.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
  • 批准号:
    2883985
  • 财政年份:
    2023
  • 资助金额:
    $ 83.32万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了