SARS-CoV-2: Pathogenesis and Countermeasure Development

SARS-CoV-2:发病机制和对策开发

基本信息

项目摘要

The global public health burden caused by SARS-CoV-2 and its resulting disease, COVID-19, has driven the rapid development of vaccines and treatment options. However, the continued emergence of novel SARS-CoV-2 variants of concern (VOC), which rapidly and globally replace earlier, previously predominant strains, and the diminished efficacy of current vaccines and certain treatments against infection by these VOC has raised concerns. Therefore, additional vaccine and therapeutic approaches are urgently needed. DMTs work had three major objectives: (i) Develop new and refine existing animal disease and infection models and study pathogenesis; (ii) repurpose existing drug compounds and evaluate their therapeutic potential in those animal models; (iii) develop vaccines and perform efficacy testing utilizing those animal models. Animal Models Program In 2020, we reported on the establishment of an intranasal Syrian hamster disease model for SARS-CoV-2 recapitulating mild to moderate human COVID-19. SARS-CoV-2 replication in the respiratory tract peaked within days with animals showing mild respiratory disease followed by complete recovery (Rosenke et al., Emerg Microbes Infect 2020). To avoid infection at a key virus replication site, we established an intramuscular infection model in Syrian hamsters. The model showed similar disease and replication characteristics, but the ID50 was about 3 log10 higher. Refinement for proper use of this disease model is still ongoing (Rosenke et al., manuscript in preparation). Since the emergence of SARS-CoV-2, multiple different variants of concern (VOCs) have been identified. Recently, we investigated disease progression in the rhesus macaque model upon inoculation with the Delta, Omicron BA.1, and Omicron BA.2 VOCs. Disease severity in rhesus macaques inoculated with Omicron BA.1 or BA.2 was lower than those inoculated with Delta and resulted in significantly lower viral loads in nasal swabs, bronchial cytology brush samples, and lung tissue in rhesus macaques. Overall, these data suggest that, in rhesus macaques, Omicron replicates to lower levels than the Delta VOC, resulting in reduced clinical disease (Rosenke et al., Sci Adv 2022). We are discontinuing our investigation into other animal species as disease/infection models. As a last report on this topic, we showed that squirrel monkeys are also not susceptible to SARS-CoV-2 (Okumura et al., in preparation). Chronic obstructive pulmonary disease (COPD) is one of the underlying conditions in adults that place them at risk for developing severe illnesses associated with COVID-19. To determine whether SARS-CoV-2's cellular tropism plays a critical role in severe lung pathophysiology, we investigated its host cell entry receptor distribution in the bronchial airway epithelium of healthy adults and high-risk adults. We found that SARS-CoV-2 preferentially infects goblet cells in the bronchial airway epithelium. SARS-CoV-2 replication was substantially increased in the COPD bronchial airway epithelium, likely due to COPD-associated goblet cell hyperplasia. Our results reveal that goblet cells play a critical role in SARS-CoV-2-induced pathophysiology in the lung. (Osan et al., Microbiol Spectr 2022) Therapeutic Program Early 2020, we started a therapeutic project focusing on repurposing drugs for use against SARS-CoV-2. We established a drug pipeline starting with literature search selecting potential drug candidates (Jarvis et al., Antivir Ther 2020). This work identified molnupioravir as a drug candidate. We next demonstrated potent in vivo efficacy of orally delivered molnupiravir in the hamster model (Rosenke et al., Nat Commun 2021; Rosenke et al., JCI Insight 2022). This supported the establishment of molnupiravir as a treatment for human COVID cases. During FY23 we tested the efficacy of two small molecule inhibitors, molnupiravir (MK-4482), a nucleoside analog, and nirmatrelvir (PF-07321332), a 3C-like protease inhibitor, in the rhesus macaque model. Macaques were infected with the SARS-CoV-2 Delta variant and treated with vehicle, MK-4482, PF-07321332, or a combination of MK-4482 and PF-07321332. Notably, use of MK-4482 and PF-07321332 in combination improved the individual inhibitory effect of both drugs, resulting in milder disease progression, stronger reduction of virus shedding from mucosal tissues of the upper respiratory tract, stronger reduction of viral replication in the lower respiratory tract, and reduced lung pathology. Our data strongly indicate superiority of combined MK-4482 and PF-07321332 treatment of SARS-CoV-2 infections (Rosenke et al., JCI Insight 2023). Vaccine Program In FY23 we evaluated a novel self-amplifying replicon RNA vaccine against SARS-CoV-2 in a pigtail macaque model of COVID-19 disease. We found that this vaccine elicited strong binding and neutralizing antibody responses against homologous virus. We also observed broad binding antibody against heterologous contemporary and ancestral strains, but neutralizing antibody responses were primarily targeted to the vaccine-homologous strain. While binding antibody responses were sustained, neutralizing antibody waned to undetectable levels in some animals after six months but were rapidly recalled and conferred protection from disease when the animals were challenged after vaccination as evident by reduced viral replication and pathology in the lower respiratory tract, reduced viral shedding in the nasal cavity and lower concentrations of pro-inflammatory cytokines in the lung. Cumulatively, our data demonstrate that a self-amplifying replicon RNA vaccine can elicit durable and protective immunity to SARS-CoV-2 infection. Furthermore, these data provide evidence that this vaccine can provide durable protective efficacy and reduce viral shedding even after neutralizing antibody responses have waned. (OConnor et al., PLoS Pathog 2023) Studies have shown that SARS-CoV-2 Omicron (B.1.1.529) is less sensitive to protective antibody conferred by previous infections and vaccines developed against earlier lineages of SARS-CoV-2. The ability of B.1.1.529 to spread even among vaccinated populations has led to a global public health demand for updated vaccines that can confer protection against B.1.1.529. We rapidly developed a replicating RNA vaccine expressing the B.1.1.529 spike and evaluated immunogenicity in mice and hamsters. We also challenged hamsters with B.1.1.529 and evaluated whether vaccination could protect against viral shedding and replication within respiratory tissue. We found that mice previously immunized with A.1-specific vaccines failed to elevate neutralizing antibody titers against B.1.1.529 following B.1.1.529-targeted boosting, suggesting pre-existing immunity may impact the efficacy of B.1.1.529-targeted boosters. Furthermore, we found that our B.1.1.529-targeted vaccine provides superior protection compared to the ancestral A.1-targeted vaccine in hamsters challenged with the B.1.1.529 VoC after a single dose of each vaccine. Our data suggest that B.1.1.529-targeted vaccines may provide superior protection against B.1.1.529 but pre-existing immunity and timing of boosting may need to be considered for optimum protection. (Hawman et al., EBioMedicine 2022) Note, our work on SARS-CoV-2 will be discontinued as COVID emergency funding has ceased. We will finish the ongoing projects but, as of now, not starting new projects on SARS-CoV-2.
SARS-CoV-2 及其引发的疾病 COVID-19 造成的全球公共卫生负担推动了疫苗和治疗方案的快速开发。然而,新型 SARS-CoV-2 相关变种 (VOC) 的不断出现,在全球范围内迅速取代了早期的主要毒株,以及当前针对这些 VOC 感染的疫苗和某些治疗方法的功效下降,引起了人们的担忧。因此,迫切需要额外的疫苗和治疗方法。 DMT 的工作有三个主要目标: (i) 开发新的和完善现有的动物疾病和感染模型并研究发病机制; (ii) 重新利用现有药物化合物并评估其在这些动物模型中的治疗潜力; (iii) 利用这些动物模型开发疫苗并进行功效测试。 动物模型项目 2020 年,我们报道了建立 SARS-CoV-2 鼻内叙利亚仓鼠疾病模型,重现轻度至中度人类 COVID-19。 SARS-CoV-2 在呼吸道中的复制在几天内达到顶峰,动物表现出轻微的呼吸道疾病,然后完全恢复(Rosenke 等人,Emerg Microbes Infect 2020)。为了避免关键病毒复制位点的感染,我们在叙利亚仓鼠中建立了肌内感染模型。该模型显示出相似的疾病和复制特征,但 ID50 高出约 3 log10。正确使用这种疾病模型的完善仍在进行中(Rosenke 等人,手稿正在准备中)。 自 SARS-CoV-2 出现以来,已鉴定出多种不同的关注变体 (VOC)。最近,我们研究了接种 Delta、Omicron BA.1 和 Omicron BA.2 VOC 后恒河猴模型的疾病进展情况。接种 Omicron BA.1 或 BA.2 的恒河猴的疾病严重程度低于接种 Delta 的恒河猴,导致恒河猴鼻拭子、支气管细胞刷样本和肺组织中的病毒载量显着降低。总体而言,这些数据表明,在恒河猴中,Omicron 的复制水平低于 Delta VOC,从而减少临床疾病(Rosenke 等人,Sci Adv 2022)。 我们将停止对其他动物物种作为疾病/感染模型的研究。作为关于该主题的最新报告,我们表明松鼠猴也不易感染 SARS-CoV-2(Okumura 等人,正在准备中)。 慢性阻塞性肺病 (COPD) 是成年人的潜在疾病之一,使他们面临患上与 COVID-19 相关的严重疾病的风险。为了确定 SARS-CoV-2 的细胞趋向性是否在严重的肺部病理生理学中发挥关键作用,我们研究了其宿主细胞进入受体在健康成人和高危成人的支气管气道上皮中的分布。我们发现 SARS-CoV-2 优先感染支气管气道上皮中的杯状细胞。 SARS-CoV-2 复制在 COPD 支气管气道上皮中显着增加,可能是由于 COPD 相关杯状细胞增生。我们的结果表明,杯状细胞在 SARS-CoV-2 诱导的肺部病理生理学中发挥着关键作用。 (Osan 等人,微生物光谱 2022) 治疗方案 2020 年初,我们启动了一个治疗项目,重点是重新利用药物来对抗 SARS-CoV-2。我们建立了一个药物管道,从文献检索开始选择潜在的候选药物(Jarvis 等人,Antivir Ther 2020)。这项工作将莫努匹拉韦确定为候选药物。接下来,我们在仓鼠模型中证明了口服莫努匹拉韦的有效体内功效(Rosenke 等人,Nat Commun 2021;Rosenke 等人,JCI Insight 2022)。这支持了莫努匹拉韦作为人类新冠病例治疗方法的建立。 2023 财年期间,我们在恒河猴模型中测试了两种小分子抑制剂的功效,即核苷类似物 molnupiravir (MK-4482) 和 3C 样蛋白酶抑制剂 nirmatrelvir (PF-07321332)。猕猴感染了 SARS-CoV-2 Delta 变体,并用媒介物、MK-4482、PF-07321332 或 MK-4482 和 PF-07321332 的组合进行治疗。值得注意的是,联合使用MK-4482和PF-07321332可以改善两种药物的个体抑制作用,从而使疾病进展更温和,更有效地减少上呼吸道粘膜组织的病毒脱落,更有效地减少下呼吸道的病毒复制,并减少肺部病理。我们的数据强烈表明 MK-4482 和 PF-07321332 联合治疗 SARS-CoV-2 感染的优越性(Rosenke 等人,JCI Insight 2023)。 疫苗计划 2023 财年,我们在 COVID-19 疾病猪尾猕猴模型中评估了一种针对 SARS-CoV-2 的新型自扩增复制子 RNA 疫苗。我们发现这种疫苗引发了针对同源病毒的强烈结合和中和抗体反应。我们还观察到针对异源当代和祖先菌株的广泛结合抗体,但中和抗体反应主要针对疫苗同源菌株。虽然结合抗体反应持续存在,但中和抗体在一些动物中在六个月后减弱至不可检测的水平,但当动物在疫苗接种后受到攻击时,中和抗体迅速被召回并赋予免受疾病的保护,下呼吸道病毒复制和病理学减少、鼻腔病毒脱落减少以及肺部促炎细胞因子浓度降低是明显的。总的来说,我们的数据表明,自扩增复制子 RNA 疫苗可以引发针对 SARS-CoV-2 感染的持久和保护性免疫力。此外,这些数据提供的证据表明,即使在中和抗体反应减弱后,该疫苗也可以提供持久的保护功效并减少病毒脱落。 (奥康纳等人,PLoS Pathog 2023) 研究表明,SARS-CoV-2 Omicron (B.1.1.529) 对先前感染所产生的保护性抗体和针对早期 SARS-CoV-2 谱系开发的疫苗不太敏感。 B.1.1.529 甚至在已接种疫苗的人群中也能传播,这导致全球公共卫生部门需要更新疫苗,以提供针对 B.1.1.529 的保护。我们迅速开发了一种表达 B.1.1.529 刺突的复制 RNA 疫苗,并评估了小鼠和仓鼠的免疫原性。我们还用 B.1.1.529 攻击仓鼠,并评估疫苗接种是否可以防止病毒在呼吸道组织内脱落和复制。我们发现,先前用 A.1 特异性疫苗免疫的小鼠在 B.1.1.529 靶向加强免疫后未能提高针对 B.1.1.529 的中和抗体滴度,这表明预先存在的免疫力可能会影响 B.1.1.529 靶向加强免疫的功效。此外,我们发现,对于用 B.1.1.529 VoC 攻击的仓鼠,在单剂每种疫苗后,我们的 B.1.1.529 靶向疫苗比祖先的 A.1 靶向疫苗提供了更好的保护。我们的数据表明,针对 B.1.1.529 的疫苗可以提供针对 B.1.1.529 的卓越保护,但可能需要考虑预先存在的免疫力和加强接种的时间,以获得最佳保护。 (Hawman 等人,EBioMedicine 2022) 请注意,随着新冠肺炎紧急资金的停止,我们关于 SARS-CoV-2 的工作也将停止。我们将完成正在进行的项目,但截至目前,尚未启动有关 SARS-CoV-2 的新项目。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Defining the Syrian hamster as a highly susceptible preclinical model for SARS-CoV-2 infection.
  • DOI:
    10.1080/22221751.2020.1858177
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    13.2
  • 作者:
    Rosenke K;Meade-White K;Letko M;Clancy C;Hansen F;Liu Y;Okumura A;Tang-Huau TL;Li R;Saturday G;Feldmann F;Scott D;Wang Z;Munster V;Jarvis MA;Feldmann H
  • 通讯作者:
    Feldmann H
SARS-CoV-2 reinfection prevents acute respiratory disease in Syrian hamsters but not replication in the upper respiratory tract.
  • DOI:
    10.1016/j.celrep.2022.110515
  • 发表时间:
    2022-03-15
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    Hansen F;Meade-White K;Clancy C;Rosenke R;Okumura A;Hawman DW;Feldmann F;Kaza B;Jarvis MA;Rosenke K;Feldmann H
  • 通讯作者:
    Feldmann H
Molnupiravir inhibits SARS-CoV-2 variants including Omicron in the hamster model.
  • DOI:
    10.1172/jci.insight.160108
  • 发表时间:
    2022-07-08
  • 期刊:
  • 影响因子:
    8
  • 作者:
    Rosenke, Kyle;Okumura, Atsushi;Lewis, Matthew C.;Feldmann, Friederike;Meade-White, Kimberly;Bohler, W. Forrest;Griffin, Amanda;Rosenke, Rebecca;Shaia, Carl;Jarvis, Michael A.;Feldmann, Heinz
  • 通讯作者:
    Feldmann, Heinz
An Intramuscular DNA Vaccine for SARS-CoV-2 Decreases Viral Lung Load but Not Lung Pathology in Syrian Hamsters.
  • DOI:
    10.3390/microorganisms9051040
  • 发表时间:
    2021-05-12
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Leventhal SS;Clancy C;Erasmus J;Feldmann H;Hawman DW
  • 通讯作者:
    Hawman DW
A single intranasal dose of chimpanzee adenovirus-vectored vaccine protects against SARS-CoV-2 infection in rhesus macaques.
  • DOI:
    10.1016/j.xcrm.2021.100230
  • 发表时间:
    2021-04-20
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hassan AO;Feldmann F;Zhao H;Curiel DT;Okumura A;Tang-Huau TL;Case JB;Meade-White K;Callison J;Chen RE;Lovaglio J;Hanley PW;Scott DP;Fremont DH;Feldmann H;Diamond MS
  • 通讯作者:
    Diamond MS
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Heinrich Feldmann其他文献

Heinrich Feldmann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Heinrich Feldmann', 18)}}的其他基金

Mali International Center for Excellence in Research
马里国际卓越研究中心
  • 批准号:
    8946551
  • 财政年份:
  • 资助金额:
    $ 34.15万
  • 项目类别:
Viral Hemorrhagic Fevers: Disease Modeling and Transmission
病毒性出血热:疾病建模和传播
  • 批准号:
    8336299
  • 财政年份:
  • 资助金额:
    $ 34.15万
  • 项目类别:
Mali International Center for Excellence in Research
马里国际卓越研究中心
  • 批准号:
    10692173
  • 财政年份:
  • 资助金额:
    $ 34.15万
  • 项目类别:
Uganda International Center for Excellence in Research
乌干达国际卓越研究中心
  • 批准号:
    10272203
  • 财政年份:
  • 资助金额:
    $ 34.15万
  • 项目类别:
CAP: Trivalent Filovirus Vaccine for Pre- and Post-Exposure Vaccination
CAP:用于暴露前和暴露后疫苗接种的三价丝状病毒疫苗
  • 批准号:
    9354909
  • 财政年份:
  • 资助金额:
    $ 34.15万
  • 项目类别:
CAP: Trivalent Filovirus Vaccine for Pre- and Post-Exposure Vaccination
CAP:用于暴露前和暴露后疫苗接种的三价丝状病毒疫苗
  • 批准号:
    8745578
  • 财政年份:
  • 资助金额:
    $ 34.15万
  • 项目类别:
Understanding the Emergence of Highly Pathogenic Avian Influenza Viruses
了解高致病性禽流感病毒的出现
  • 批准号:
    8946530
  • 财政年份:
  • 资助金额:
    $ 34.15万
  • 项目类别:
Viral Hemorrhagic Fevers: Disease Modeling and Transmission
病毒性出血热:疾病建模和传播
  • 批准号:
    10927843
  • 财政年份:
  • 资助金额:
    $ 34.15万
  • 项目类别:
Mali International Center for Excellence in Research
马里国际卓越研究中心
  • 批准号:
    10272204
  • 财政年份:
  • 资助金额:
    $ 34.15万
  • 项目类别:
Viral Hemorrhagic Fevers: Disease Modeling and Transmission
病毒性出血热:疾病建模和传播
  • 批准号:
    10272160
  • 财政年份:
  • 资助金额:
    $ 34.15万
  • 项目类别:

相似海外基金

Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
  • 批准号:
    MR/Z503605/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.15万
  • 项目类别:
    Research Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
  • 批准号:
    2402691
  • 财政年份:
    2024
  • 资助金额:
    $ 34.15万
  • 项目类别:
    Standard Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
  • 批准号:
    2336167
  • 财政年份:
    2024
  • 资助金额:
    $ 34.15万
  • 项目类别:
    Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
  • 批准号:
    24K12150
  • 财政年份:
    2024
  • 资助金额:
    $ 34.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
  • 批准号:
    2341428
  • 财政年份:
    2024
  • 资助金额:
    $ 34.15万
  • 项目类别:
    Standard Grant
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
  • 批准号:
    DE240100561
  • 财政年份:
    2024
  • 资助金额:
    $ 34.15万
  • 项目类别:
    Discovery Early Career Researcher Award
RUI: Evaluation of Neurotrophic-Like properties of Spaetzle-Toll Signaling in the Developing and Adult Cricket CNS
RUI:评估发育中和成年蟋蟀中枢神经系统中 Spaetzle-Toll 信号传导的神经营养样特性
  • 批准号:
    2230829
  • 财政年份:
    2023
  • 资助金额:
    $ 34.15万
  • 项目类别:
    Standard Grant
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
  • 批准号:
    23K09542
  • 财政年份:
    2023
  • 资助金额:
    $ 34.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
  • 批准号:
    23K07552
  • 财政年份:
    2023
  • 资助金额:
    $ 34.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
  • 批准号:
    23K07559
  • 财政年份:
    2023
  • 资助金额:
    $ 34.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了