NHGRI/DIR Bioinformatics and Scientific Programming Core
NHGRI/DIR 生物信息学和科学编程核心
基本信息
- 批准号:10910770
- 负责人:
- 金额:$ 305.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalATAC-seqAddressAnimalsArchivesAreaAttention deficit hyperactivity disorderAutopsyBar CodesBindingBioinformaticsBlood PlateletsCBFbeta-MYH11 fusion proteinCanis familiarisCellsChIP-seqChild CareChromatinClassificationClinical DataClinical InvestigatorClinical ResearchCollaborationsCollectionCommunitiesComplexComputer AnalysisComputer softwareCustomDNADNA MethylationDataData AnalysesData CollectionData ReportingData SetDatabasesDevelopmentDiagnosisEducationExpression ProfilingFamilial Platelet DisorderGene ExpressionGenesGeneticGenetic DiseasesGenetic TranscriptionGenomeGenomic SegmentGenomicsGoalsHair CellsHaplotypesHereditary DiseaseHistocompatibilityHuman GenomeImmunoglobulinsIndividualInduced pluripotent stem cell derived neuronsInheritedInvestigationIslets of LangerhansKnock-in MouseLocationMaintenanceMajor Histocompatibility ComplexMalignant NeoplasmsMapsMedicalMetabolic DiseasesMethodologyMethodsMethylationMitochondrial DiseasesMnemiopsisModelingMutationMyeloproliferative diseaseNational Human Genome Research InstituteNeuronsNon-Insulin-Dependent Diabetes MellitusParentsPatientsPeripheral Blood Mononuclear CellPhenotypeProtein IsoformsProteomeProtocols documentationRNA SplicingRUNX1 geneRecording of previous eventsRegulationReportingResearchResearch PersonnelResearch SupportRetrievalSamplingSecuritySensory HairServicesSickle CellSurveysT memory cellT-LymphocyteTechnologyThe Cancer Genome AtlasTrainingUnited States National Institutes of HealthUpdateValidationVariantYouthZebrafishbehavioral studybone cellbrain tissuecaregivingcell typecohortcomputerized toolscomputing resourcesdata portaldesigndiabeticdisorder riskexomeexome sequencinggene networkgenome-widegenomic datahealth assessmenthealthy volunteerinduced pluripotent stem cellinnovationinorganic phosphateinsightintegration siteisletlarge datasetslarge scale dataleukemiamicrobiomemitochondrial dysfunctionmouse genomemouse modelneuralnon-diabeticperipheral bloodprotein structure predictionpyruvate dehydrogenasesex determinationsingle nucleus RNA-sequencingsingle-cell RNA sequencingtooltranscriptometranscriptome sequencingtranscriptomicsweb interfaceweb serverweb site
项目摘要
The Bioinformatics and Scientific Programming Core actively supports the research being performed by NHGRI/DIR investigators by providing expertise and assistance in scientific programming and computational analysis. The Core facilitates access to specialized software and hardware, develops generalized software solutions that can address a variety of questions in genomic research, develops database solutions for the efficient archiving and retrieval of experimental and clinical data, disseminates new software and database solutions to the genome community at-large, collaborates with DIR researchers on computationally intensive projects, and provides educational opportunities in bioinformatics to trainees. Support for projects includes not only data analysis but also related efforts focused on data collection through the public DIR research web site, located at https://research.nhgri.nih.gov. Additional information can be found on the Cores web site, at https://dir.nhgri.nih.gov/nhgri_cores/BSPC.
Projects performed during the reporting period include:
- the implementation of a genome data portal for the preliminary annotation and analysis of the Hydra vulgaris AEP genome,
- providing bioinformatic support for The Genomic Ascertainment Cohort (TGAC), including implementation of the gnomAD variant browser, for establishing a shared genomic ascertainment cohort of at least 10,000 individuals whose genomes or exomes have been sequenced and are recallable for secondary phenotyping studies,
- maintaining a variant co-occurrence pipeline to identify TGAC individuals with two variants occurring on the same haplotype,
- synthesizing variant data from five cohorts, consisting of 11,000 genomes and 3,800 exomes, to be uploaded into RPC Genomic Data Browser,
- analyzing single-cell RNA-seq and ATAC-seq data obtained from zebrafish sensory hair cells,
- implementing software to analyze data generated from the scSPRITE protocol, which allows for investigation of 3D genome arrangement at the single cell level
- web site development for the Cohort Analytics Core (CAC) and Reverse Phenotyping Core (RPC)
- providing support for the FUSION Project, investigating the genetic basis of type 2 diabetes disease risk through the use of single-cell and/or single-nuclei RNA-seq technology, with the goal of interrogating the transcriptomes of the individual cells that comprise the pancreatic islet. Differences in the single-cell transcriptomic signatures and cell type composition of islets obtained from diabetic and non-diabetic patients will be assessed
- updating the Skippy web server to comply with security regulations, as well as including additional complementary tools for splicing prediction,
- performing isoform expression profiling of pan-cancer datasets in TCGA,
analyzing methylation marks in parents caring for children with inherited metabolic disorders,
performing platelet transcriptome analysis in patients with familial platelet disorder with associated myeloid malignancies,
- determining differences in the genome-wide DNA methylation landscape between CBFB-MYH11 knockin mice that serve as a model for leukemia and wildtype controls,
- analyzing EM-seq, ChIC-seq, and RNA-seq data to assess changes in genome-wide DNA methylation, RUNX1 binding, and gene expression in iPSCs derived from patients with RUNX1 mutations;
- single-cell RNA-seq analyses in peripheral blood from patients with mitochondrial disease,
- ATAC-seq, ChIP-seq and RNA-seq in effector and memory T-cells from wild type and pyruvate dehydrogenase deficient T-cells to examine the chromatin and transcriptional landscape,
- eQTL analysis using RNA-seq data generated from PBMCs from mitochondrial disease patients and healthy volunteers,
- exome sequencing of LCLs from mitochondrial disease patients,
- ATAC-seq and RNA-seq of iPSC-derived neurons to identify changes in chromatin accessibility and gene expression due to mitochondrial dysfunction,
- continuing maintenance of a customized database and web interface for storing and computing on genomic data from dogs,
- design and implementation of surveys that assess the health of pet dogs whose DNA samples have been submitted to scientific studies,
- RNA-seq analyses of post-mortem brain tissue to compare neuronal gene expression in youths with a history of ADHD against matched controls in order to establish a neuronal transcriptome and determine the genes and neural gene networks that influence the development of ADHD,
- developing a website to facilitate the collection of sensitive medical data about genetic conditions, for classification and analysis utilizing AI methodologies;
- ATAC-Seq and RNA-Seq to initiate understanding of the phosphate sensing mechanism in animal bone cells,
- identifying integration sites of AAV in mouse and human genomes and developing methods to characterize the clustering and locations of the integration sites
- identification of retroviral integration sites from RNA-seq data,
- annotation of immunoglobulin superfamily genes in the histocompatibility complex of Hydractinia, variant calling aimed at mapping sex determination loci and producing fine-scale mapping data for the genomic region controlling histocompatibility in Hydractinia,
- implementation of a gene prediction pipeline and genome data portal for the preliminary annotation and analysis of the Hydractinia genome,
- implementation of a genome data portal for the Capitella teleta genome,
- developing a proteome-scale dataset resource of computationally predicted protein structures for Mnemiopsis leidyi,
- analyzing RNA-seq data comparing mouse models of MMA versus healthy controls, and
- updating the RPC variant browser to make it compliant with NIH security regulations and introduce new features.
During the reporting period, the Core also supported Labmatrix, NHGRIs clinical research database. In addition to its general use by NHGRI clinical investigators, Labmatrix is utilized for large-scale data and/or sample management for the Inherited Diseases and Caregiving Study, the Insights Microbiome/Sickle Cell Study, the ClinSeq Study, and GENE-FORECAST. NHGRI Labmatrix Support services include user training and help desk support, legacy data mapping, data validation and import, and barcoding implementation. Support staff routinely handle large datasets, import data from CRIS, develop complex queries, and generate custom data reports on behalf of database users.
Finally, recognizing the importance of having a degree of facility with computational approaches, the Core continues to offer a number of courses that cover various areas of the bioinformatic landscape.
生物信息学和科学规划核心通过提供科学规划和计算分析方面的专业知识和协助,积极支持NHGRI/DIR研究者正在进行的研究。Core促进了对专业软件和硬件的访问,开发了可以解决基因组研究中各种问题的通用软件解决方案,开发了用于有效存档和检索实验和临床数据的数据库解决方案,向基因组社区广泛传播新的软件和数据库解决方案,与DIR研究人员在计算密集型项目上合作,并为学员提供生物信息学方面的教育机会。对项目的支持不仅包括数据分析,还包括通过设在https://research.nhgri.nih.gov的公共DIR研究网站集中收集数据的相关工作。更多信息可以在Cores网站上找到,网址是https://dir.nhgri.nih.gov/nhgri_cores/BSPC。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andreas Baxevanis其他文献
Andreas Baxevanis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andreas Baxevanis', 18)}}的其他基金
NHGRI/DIR Bioinformatics and Scientific Programming Core
NHGRI/DIR 生物信息学和科学编程核心
- 批准号:
8750737 - 财政年份:
- 资助金额:
$ 305.22万 - 项目类别:
Comparative Genomic Studies on the Evolution of Morphological Complexity
形态复杂性进化的比较基因组研究
- 批准号:
10691105 - 财政年份:
- 资助金额:
$ 305.22万 - 项目类别:
NHGRI/DIR Bioinformatics and Scientific Programming Core
NHGRI/DIR 生物信息学和科学编程核心
- 批准号:
8350237 - 财政年份:
- 资助金额:
$ 305.22万 - 项目类别:
Mining the Sequence of the Human Genome for Important Sequence Features
挖掘人类基因组序列以获取重要序列特征
- 批准号:
7734879 - 财政年份:
- 资助金额:
$ 305.22万 - 项目类别:
相似国自然基金
基于ATAC-seq与DNA甲基化测序探究染色质可及性对莲两生态型地下茎适应性分化的作用机制
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
利用ATAC-seq联合RNA-seq分析TOP2A介导的HCC肿瘤细胞迁移侵
袭的机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向图神经网络ATAC-seq模体识别的最小间隔单细胞聚类研究
- 批准号:62302218
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于ATAC-seq策略挖掘穿心莲基因组中调控穿心莲内酯合成的增强子
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于单细胞ATAC-seq技术的C4光合调控分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于ATAC-seq技术研究交叉反应物质197调控TFEB介导的自噬抑制子宫内膜异位症侵袭的分子机制
- 批准号:82001520
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
靶向治疗动态调控肺癌细胞DNA可接近性的ATAC-seq分析
- 批准号:81802809
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
运用ATAC-seq技术分析染色质可接近性对犏牛初级精母细胞基因表达的调控作用
- 批准号:31802046
- 批准年份:2018
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
基于ATAC-seq和RNA-seq研究CWIN调控采后番茄果实耐冷性作用机制
- 批准号:31801915
- 批准年份:2018
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于ATAC-seq高精度预测染色质相互作用的新方法和基于增强现实的3D基因组数据可视化
- 批准号:31871331
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
相似海外基金
Project #2 Integrated single-nucleus multi-omics (ATAC-seq+RNA-seq or chromatin accessibility + RNA-seq) of human TGs
项目
- 批准号:
10806548 - 财政年份:2023
- 资助金额:
$ 305.22万 - 项目类别:
A transposase system for integrative ChIP-exo and ATAC-seq analysis at single-cell resolution
用于单细胞分辨率综合 ChIP-exo 和 ATAC-seq 分析的转座酶系统
- 批准号:
10210424 - 财政年份:2018
- 资助金额:
$ 305.22万 - 项目类别:
EAPSI: Developing Single Nucleus ATAC-seq to Map the Ageing Epigenome
EAPSI:开发单核 ATAC-seq 来绘制衰老表观基因组图谱
- 批准号:
1714070 - 财政年份:2017
- 资助金额:
$ 305.22万 - 项目类别:
Fellowship Award
A cloud-based learning module to analyze ATAC-seq and single cell ATAC-seq data
基于云的学习模块,用于分析 ATAC-seq 和单细胞 ATAC-seq 数据
- 批准号:
10558379 - 财政年份:2001
- 资助金额:
$ 305.22万 - 项目类别:














{{item.name}}会员




