Developmental regulation of tendon-bone connectivity in the jaw
颌骨腱骨连接的发育调节
基本信息
- 批准号:10625493
- 负责人:
- 金额:$ 45.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-08 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AffectCartilageCell Fate ControlCellsChondrocytesColorCongenital DisordersDataDevelopmentFGFR2 geneFibrocartilagesFluorescenceFutureGene DosageGenesGeneticGenetic TranscriptionGenomicsHybrid CellsHybridsIn Situ HybridizationJawJaw AbnormalitiesKnowledgeLigandsLimb structureMasticationMesodermModelingMolecularMorphologyMusNeural Crest CellOsteoblastsOutputPathologyPatternPhysiologic OssificationPopulationPositioning AttributePropertyRegulationRepressionSeriesSignal InductionSignal TransductionSpecific qualifier valueSpeechSystemTendon structureTestingTissuesTranscriptional RegulationUp-RegulationVenusbonebone cellcartilage cellcell typedesigninsightjaw movementmineralizationmouse geneticsmouse modelnotch proteinnovelosteogenicprogenitorrepairedscleraxissingle moleculesingle-cell RNA sequencingskeletalstem cells
项目摘要
PROJECT SUMMARY / ABSTRACT
Integration of the jaw with the surrounding musculature is essential for speech and mastication. A
fundamental step in jaw integration begins in development, with formation of stable tendon-bone attachments
that are zonally organized into tendon, fibrocartilage, mineralized fibrocartilage, and bone. The gradient of
skeletogenic cell types within the attachment arises from attachment progenitors (APs) that, through unclear
mechanisms, interpret chondrogenic versus tenogenic signaling to acquire distinct cell fates along the tendon-
bone axis. Even less is known about APs of the jaw which, unlike their counterparts in the limb and trunk, are
derived from neural crest cells (NCC). This study tests the idea that jaw APs differentiate into a gradient of
skeletogenic cell types through a series of binary switches that are regulated by an NCC-specific mechanism.
We have found that jaw APs express graded levels of Scx, Runx2, and Sox9 depending on their position along
the tendon-bone axis. We also found that during AP differentiation a novel intermediate Scx+/Runx2+
population emerges. In Runx2+/- mice this intermediate population fails to form, and APs differentiate into
tendon over cartilage/bone. While this suggests that tripotent APs differentiate through lineage-restricted
intermediates, how APs spatially interpret signals for tendon vs. cartilage/bone to make these cell fate
decisions and whether APs always choose between one fate or the other (e.g. tenocyte vs. osteoblast) or acquire
hybrid properties (e.g. osteofibrogenic) is unknown. We recently showed that an Fgf-Notch signaling axis is
regionally deployed along the tendon-bone interface and promotes AP differentiation into tendon over
cartilage/bone. This mechanism appears NCC-specific, as loss of Fgfr2 in mesoderm-derived APs does not
alter limb attachment development. In this study, we use mouse genetics along with cutting-edge genomics to
test that, during AP differentiation, integration of Fgf and Notch signaling promotes tendon cell fate in a series
of binary switches by regulating levels of Scx, Runx2, and Sox9 transcription. In Aim1 we will use clonal lineage
tracing and scRNA-seq to determine the lineage relationship between APs and the skeletogenic cells in the
tendon-bone attachment. In Aim2, we will use conditional mouse genetics to determine how differences in
Notch signal strength along the tendon-bone axis alter AP cell fate decisions. In Aim3, we will use a
combination of mouse genetics and CUT&RUN-seq to test that Erk signaling integrates Fgf and Notch
signaling through linear and parallel mechanisms. In the linear mechanism, Erk activates Notch2 signaling by
initiating Dll1 expression. In the parallel mechanism, Erk and Notch2 independently activate the same
downstream targets genes for tendon fate including Scx. Completion of these aims will reveal a developmental
mechanism that establishes a gradient of skeletogenic cell types in tendon-bone attachments of the jaw.
Knowledge gained will guide future developmentally inspired strategies for jaw attachment repair and may
inform how jaw abnormalities develop in the FGFR2-and NOTCH2- related congenital disorders.
项目摘要/摘要
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nuclear receptor Nr5a2 promotes diverse connective tissue fates in the jaw.
- DOI:10.1016/j.devcel.2023.02.011
- 发表时间:2023-03
- 期刊:
- 影响因子:11.8
- 作者:Hung-Jhen Chen;Lindsey Barske;J. Talbot;Olivia M. Dinwoodie;Ryan R. Roberts;D'Juan T Farmer;C. Jimenez;Amy E. Merrill;A. Tucker;J. G. Crump
- 通讯作者:Hung-Jhen Chen;Lindsey Barske;J. Talbot;Olivia M. Dinwoodie;Ryan R. Roberts;D'Juan T Farmer;C. Jimenez;Amy E. Merrill;A. Tucker;J. G. Crump
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amy E Merrill其他文献
Amy E Merrill的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amy E Merrill', 18)}}的其他基金
2022 Fibroblast Growth Factors in Development and Disease GRC and GRS
2022 发育和疾病中的成纤维细胞生长因子 GRC 和 GRS
- 批准号:
10462966 - 财政年份:2022
- 资助金额:
$ 45.87万 - 项目类别:
Developmental regulation of tendon-bone connectivity in the jaw
颌骨腱骨连接的发育调节
- 批准号:
10209547 - 财政年份:2021
- 资助金额:
$ 45.87万 - 项目类别:
Developmental regulation of tendon-bone connectivity in the jaw
颌骨腱骨连接的发育调节
- 批准号:
10424505 - 财政年份:2021
- 资助金额:
$ 45.87万 - 项目类别:
THE ROLE OF FGFR2 IN PROTEIN SYNTHESIS DURING SKELETAL DEVELOPMENT
FGFR2 在骨骼发育过程中蛋白质合成中的作用
- 批准号:
10021210 - 财政年份:2019
- 资助金额:
$ 45.87万 - 项目类别:
THE ROLE OF FGFR2 IN PROTEIN SYNTHESIS DURING SKELETAL DEVELOPMENT
FGFR2 在骨骼发育过程中蛋白质合成中的作用
- 批准号:
8941673 - 财政年份:2015
- 资助金额:
$ 45.87万 - 项目类别:
THE ROLE OF FGFR2 IN PROTEIN SYNTHESIS DURING SKELETAL DEVELOPMENT
FGFR2 在骨骼发育过程中蛋白质合成中的作用
- 批准号:
9097692 - 财政年份:2015
- 资助金额:
$ 45.87万 - 项目类别:
Fgf signaling in patterning of the calvarial joints
颅骨关节模式中的 Fgf 信号传导
- 批准号:
10585820 - 财政年份:2015
- 资助金额:
$ 45.87万 - 项目类别:
THE ROLE OF FGFR2 IN PROTEIN SYNTHESIS DURING SKELETAL DEVELOPMENT
FGFR2 在骨骼发育过程中蛋白质合成中的作用
- 批准号:
9304184 - 财政年份:2015
- 资助金额:
$ 45.87万 - 项目类别:
相似海外基金
Replicating the cartilage micromechanical environment
复制软骨微机械环境
- 批准号:
DP240102160 - 财政年份:2024
- 资助金额:
$ 45.87万 - 项目类别:
Discovery Projects
Physiotherapy treatment effect on disuse atrophy of articular cartilage
物理治疗对关节软骨废用性萎缩的治疗效果
- 批准号:
23K10423 - 财政年份:2023
- 资助金额:
$ 45.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analyzing the role of cAMP and STAT3 signaling in cartilage homeostasis and osteoarthritis development
分析 cAMP 和 STAT3 信号在软骨稳态和骨关节炎发展中的作用
- 批准号:
10822167 - 财政年份:2023
- 资助金额:
$ 45.87万 - 项目类别:
Laryngotracheal Reconstruction with Engineered Cartilage
用工程软骨重建喉气管
- 批准号:
10660455 - 财政年份:2023
- 资助金额:
$ 45.87万 - 项目类别:
Molecular engineering of HA-based lubricants for articular cartilage
用于关节软骨的 HA 基润滑剂的分子工程
- 批准号:
10712721 - 财政年份:2023
- 资助金额:
$ 45.87万 - 项目类别:
Elucidate the mechanism of cartilage degeneration from synovial fluid exosomes and establish self-repair therapy by exercise
从滑液外泌体阐明软骨退化机制并建立运动自我修复疗法
- 批准号:
22KJ2541 - 财政年份:2023
- 资助金额:
$ 45.87万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Molecular screening in cranial base cartilage and jaw development
颅底软骨和颌骨发育的分子筛选
- 批准号:
23K09331 - 财政年份:2023
- 资助金额:
$ 45.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
3D printing multifunctional devices without internal interfaces for cartilage repair
3D打印无内部接口的多功能软骨修复装置
- 批准号:
EP/W034247/1 - 财政年份:2023
- 资助金额:
$ 45.87万 - 项目类别:
Research Grant
Osteocyte-dependent mechanisms of bone cartilage crosstalk in osteoarthritis
骨关节炎中骨软骨串扰的骨细胞依赖性机制
- 批准号:
10727267 - 财政年份:2023
- 资助金额:
$ 45.87万 - 项目类别: