Neurocomputational Approaches to Emotion Representation
情绪表征的神经计算方法
基本信息
- 批准号:10626123
- 负责人:
- 金额:$ 76.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAffectAffectiveAgeAnxietyArousalAutonomic nervous systemBasic ScienceBehavioralBrainClassificationClinicalClipCodeComputer ModelsDataDepressed moodDiagnosticDimensionsDiseaseEmotionalEmotionsEquilibriumExhibitsFormulationFrequenciesFunctional Magnetic Resonance ImagingFutureGoalsGraphHumanIndividualIndividual DifferencesInterventionLinkMachine LearningMaintenanceMapsMeasuresMental HealthMental disordersMethodsMindModelingNational Institute of Mental HealthNegative ValenceOutcomeParticipantPatient Self-ReportPatternPersonal SatisfactionPhysiologicalPopulationPositive ValenceProcessPsychopathologyPsychophysiologyReportingResearchResearch Domain CriteriaRestRiskRoleSignal TransductionSourceSpace ModelsStructureSymptomsSystemTestingTimeTrainingUnited States National Institutes of HealthValidationWorkaffective computinganxiousanxious individualsbiobehaviorcomorbiditycravingdata integrationdata repositoryexperiencefunctional MRI scanimprovedindexingmachine learning algorithmmarkov modelmovienegative affectneuralneural network architectureneurophysiologyneuroregulationnovelorganizational structurerepositoryruminationself-reported anxietytheoriestooltrait
项目摘要
Maintaining an adaptive balance of emotions is central to well-being, and dysregulated emotions contribute
broadly to clinical disorders that impart high personal and societal burdens. Recognizing the transdiagnostic
importance of emotion to mental health, the National Institute of Health's Research Domain Criteria (RDoC)
matrix contains overarching domains of Negative Valence, Positive Valence, and Arousal. However, the matrix
underspecifies how specific affective states like sadness, anxiety, or craving are organized within and across
these domains, in part because it is unknown whether representations of discrete emotions are reliably
differentiated. Other RDoC constructs, such as rumination and worry, modify the temporal parameters of
emotions that confer psychopathology risk and exacerbate symptom maintenance. Nonetheless, it is unknown
how these processes interface with emotional brain circuits to impact affect dynamics, particularly as they often
occur spontaneously during mind wandering. The proposed research promises to improve the RDoC depiction
of these emotion-related constructs by taking an affective computing approach. During combined recording of
psychophysiology and functional magnetic resonance imaging (fMRI), adult participants will experience
emotions to vignettes and movie clips spanning the arousal and valence dimensions, and will report on their
spontaneous emotions during resting-state fMRI scans. Machine learning algorithms will decode emotion-
specific signals across the levels of analysis, which will be integrated using Bayesian state-space modeling. An
analysis of classifier errors will test competing predictions from emotion theories regarding the optimal
structure of affective space. Using graph theoretic tools, we will characterize the neural network architecture of
the discrete emotion representations to identify provincial and connector hubs that can be used as novel targets
for future symptom-specific or co-morbid neuromodulation interventions, respectively. We will apply the
emotion-specific maps to resting-state data from the same participants to create neurophysiological indices of
spontaneous emotions and to relate their frequencies to measures of trait and state affect as a validation step.
Using stochastic modeling of the resting-state data, we will derive temporal dynamics metrics to test the
hypothesis that rumination and worry promote emotional inertia during mind wandering. Finally, we will use
existing data repositories to demonstrate that our novel indices of affect dynamics transdiagnostically
differentiate resting-state fMRI activity patterns in mental health disorders from healthy controls. The
proposed research will improve upon current RDoC formulations of Negative Affect, Positive Affect, and
Arousal domains by informing how discrete emotions are organized within and across these domains, by
integrating emotion representations across multiple RDoC units of analysis, by informing how rumination and
worry impact neurophysiological signatures of spontaneous emotions, and by establishing the clinical utility of
computationally-derived metrics of emotion dynamics.
保持情绪的适应性平衡是幸福的核心,而失调的情绪也有贡献
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Deep Generative Analysis for Task-Based Functional MRI Experiments
- DOI:10.1101/2021.04.04.438365
- 发表时间:2021-04
- 期刊:
- 影响因子:0
- 作者:Daniela de Albuquerque;Jack Goffinet;R. Wright;John M. Pearson
- 通讯作者:Daniela de Albuquerque;Jack Goffinet;R. Wright;John M. Pearson
The Temporal Dynamics of Spontaneous Emotional Brain States and Their Implications for Mental Health.
- DOI:10.1162/jocn_a_01787
- 发表时间:2022-03-31
- 期刊:
- 影响因子:3.2
- 作者:Kragel, Philip A.;Hariri, Ahmad R.;LaBar, Kevin S.
- 通讯作者:LaBar, Kevin S.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KEVIN S LABAR其他文献
KEVIN S LABAR的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KEVIN S LABAR', 18)}}的其他基金
Neurocomputational Approaches to Emotion Representation
情绪表征的神经计算方法
- 批准号:
10421064 - 财政年份:2020
- 资助金额:
$ 76.29万 - 项目类别:
Neurocomputational Approaches to Emotion Representation
情绪表征的神经计算方法
- 批准号:
10059052 - 财政年份:2020
- 资助金额:
$ 76.29万 - 项目类别:
Neurocomputational Approaches to Emotion Representation
情绪表征的神经计算方法
- 批准号:
10227196 - 财政年份:2020
- 资助金额:
$ 76.29万 - 项目类别:
Neurobehavioral Mechanisms of Emotion Regulation in Depression across the Adult Lifespan
成年期抑郁症情绪调节的神经行为机制
- 批准号:
9883047 - 财政年份:2017
- 资助金额:
$ 76.29万 - 项目类别:
Brain Imaging Studies of Negative Reinforcement in Humans
人类负强化的脑成像研究
- 批准号:
8307465 - 财政年份:2009
- 资助金额:
$ 76.29万 - 项目类别:
Brain Imaging Studies of Negative Reinforcement in Humans
人类负强化的脑成像研究
- 批准号:
8116650 - 财政年份:2009
- 资助金额:
$ 76.29万 - 项目类别:
Biomarkers of Interoceptive Awareness in Adolescent Anorexia Nervosa
青少年神经性厌食症内感受意识的生物标志物
- 批准号:
7819864 - 财政年份:2009
- 资助金额:
$ 76.29万 - 项目类别:
Brain Imaging Studies of Negative Reinforcement in Humans
人类负强化的脑成像研究
- 批准号:
8515375 - 财政年份:2009
- 资助金额:
$ 76.29万 - 项目类别:
Brain Imaging Studies of Negative Reinforcement in Humans
人类负强化的脑成像研究
- 批准号:
7776756 - 财政年份:2009
- 资助金额:
$ 76.29万 - 项目类别:
相似海外基金
Affective Virality on Social Media: The Role of Culture and Ideal Affect
社交媒体上的情感病毒传播:文化和理想情感的作用
- 批准号:
2214203 - 财政年份:2022
- 资助金额:
$ 76.29万 - 项目类别:
Standard Grant
'Essaying Affect: the contemporary essay as a place of affective possibility'
“散文情感:当代散文作为情感可能性的场所”
- 批准号:
2438692 - 财政年份:2020
- 资助金额:
$ 76.29万 - 项目类别:
Studentship
Influence of Physical Activity on Daily Positive Affect & Affective Neural Activity in Preschoolers
体力活动对日常积极影响的影响
- 批准号:
10231121 - 财政年份:2018
- 资助金额:
$ 76.29万 - 项目类别:
Influence of Physical Activity on Daily Positive Affect & Affective Neural Activity in Preschoolers
体力活动对日常积极影响的影响
- 批准号:
10475608 - 财政年份:2018
- 资助金额:
$ 76.29万 - 项目类别:
Influence of Physical Activity on Daily Positive Affect & Affective Neural Activity in Preschoolers
体力活动对日常积极影响的影响
- 批准号:
10474838 - 财政年份:2018
- 资助金额:
$ 76.29万 - 项目类别:
Affect- and Psychotechnolog Studies. Emergent Technologies of Affective and Emotional (Self-)Control
影响和心理技术研究。
- 批准号:
279966032 - 财政年份:2015
- 资助金额:
$ 76.29万 - 项目类别:
Scientific Networks
Does minute listeners' head movement affect affective aspects of human spatial hearing perception?
听众的微小头部运动是否会影响人类空间听觉感知的情感方面?
- 批准号:
26540093 - 财政年份:2014
- 资助金额:
$ 76.29万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
RI: Small: An Affect-Adaptive Spoken Dialogue System that Responds Based on User Model and Multiple Affective States
RI:Small:基于用户模型和多种情感状态进行响应的情感自适应口语对话系统
- 批准号:
0914615 - 财政年份:2009
- 资助金额:
$ 76.29万 - 项目类别:
Standard Grant
Affective Rendering ? Toward the Realization of Affect Adapted Image Synthesis
情感渲染?
- 批准号:
21300033 - 财政年份:2009
- 资助金额:
$ 76.29万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A Study by Means of Analysis of Structure of Covariunce, on Factors which Affect Japanese Language Acquisition and Mother Tongue Maintenance of Children from Overseas-an Integral Study of Cognitive Linguistic / Affective / Socio Cultural Factors-
协方差结构分析影响海外儿童日语习得和母语维持的因素研究-认知语言/情感/社会文化因素的综合研究-
- 批准号:
11480051 - 财政年份:1999
- 资助金额:
$ 76.29万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




