NanoBioSensor Initiative

纳米生物传感器计划

基本信息

  • 批准号:
    7733435
  • 负责人:
  • 金额:
    $ 18.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
  • 资助国家:
    美国
  • 起止时间:
  • 项目状态:
    未结题

项目摘要

DNA microarrays are powerful tools for high throughput monitoring of gene expression at the transcription level, determining genome wide DNA copy number changes, identifying targets of transcription factors, sequencing and more recently for profiling the micro RNA (miRNA) levels in cancer. The first reported DNA microarray was fabricated on nylon membranes using cDNA clones and used radioactively labeled targets for detection. Since then, many large-scale DNA microarray platforms have been developed, which includes, double-stranded cDNA, single stranded short 25mers (Affymetrix), mid-sized 30mer (Combimatrix) or long 50-70mers (Nimblegen or Agilent) oligonucleotides. All these methods rely upon various combinations of enzymatic amplification of the nucleic acid and fluorescently labeling of targets, hybridization, and amplification of signal followed by detection by optical scanners. While significant strides have been made in fluorescent-based DNA microarray technology, the methodologies are often time-consuming and in addition rely on the determination of fluorescence intensity and the sensitivity is thus limited by the ability to detect small numbers of photons. To overcome these barriers, we propose a highly sensitive system, based on transistors for the electronic detection of nucleic acid (NA) hybridization. The technique is analogous to the microarray concept, in which each transistor is associated with a distinct oligonucleotide, and is projected to far surpass existing technology in sensitivity, ease of use and in the capability toward miniaturization. Another significant advantage is that the method proposed does not require chemical or enzymatic manipulation of the nucleic acid being detected. In field effect transistors, the current versus voltage characteristics or transconductance between the source and drain electrodes are strongly dependent upon the total charge accumulated at the base (B) terminal. This effect is well understood and one can accurately estimate the amount of charge at the base from measurement of the transconductance curve. In the absence of bound charges at the base, as shown in the first panel, no current will flow at any voltage so that the transconductance curve traces a horizontal line. In the middle panel, we assume that single stranded DNA oligomers are immobilized at the base. This will cause a net negative charge from the phosphate backbone to accumulate at the base. The resulting transconductance curve will exhibit slight but measurable departure from horizontal linearity. Finally, if the single stranded DNA were hybridized with its complementary sequence, a net doubling of charge will occur at the base. This will drive the transistor into forward biased full operation and will produce large amplitude and highly nonlinear transconductance curves. The primary method that will be developed are transistors that utilize carbon nanotubes (CNTs). In parallel, a pilot study will be performed in collaboration with Dr. Stephanie Getty and Dr Gunter Kletetschka (NASA and Catholic University) to develop silicon nanowire (SiNW) transistors. Both operate very similar to silicon based metal oxide field effect transistors (MOSFETS). Notably, it has been shown that CNTs have a higher intrinsic mobility than silicon, leading to much higher charge sensitivity when used as a transistor. The geometry of these nanomaterials (cylinders) can better focus electric field than the planar (planks) geometry used in conventional MOSFETs, adding to the sensitivity of the nanodevice. The CNT system, however, presents challenges such as inter-nanotube variation in electronic properties and high temperature processing, which can be mitigated using SiNWs.DNA microarrays are powerful tools for high throughput monitoring of gene expression at the transcription level, determining genome wide DNA copy number changes, identifying targets of transcription factors, sequencing and more recently for profiling the micro RNA (miRNA) levels in cancer. The first reported DNA microarray was fabricated on nylon membranes using cDNA clones and used radioactively labeled targets for detection. Since then, many large-scale DNA microarray platforms have been developed, which includes, double-stranded cDNA, single stranded short 25mers (Affymetrix), mid-sized 30mer (Combimatrix) or long 50-70mers (Nimblegen or Agilent) oligonucleotides. All these methods rely upon various combinations of enzymatic amplification of the nucleic acid and fluorescently labeling of targets, hybridization, and amplification of signal followed by detection by optical scanners. While significant strides have been made in fluorescent-based DNA microarray technology, the methodologies are often time-consuming and in addition rely on the determination of fluorescence intensity and the sensitivity is thus limited by the ability to detect small numbers of photons. To overcome these barriers, we propose a highly sensitive system, based on transistors for the electronic detection of nucleic acid (NA) hybridization. The technique is analogous to the microarray concept, in which each transistor is associated with a distinct oligonucleotide, and is projected to far surpass existing technology in sensitivity, ease of use and in the capability toward miniaturization. Another significant advantage is that the method proposed does not require chemical or enzymatic manipulation of the nucleic acid being detected. In field effect transistors, the current versus voltage characteristics or transconductance between the source and drain electrodes are strongly dependent upon the total charge accumulated at the base (B) terminal. This effect is well understood and one can accurately estimate the amount of charge at the base from measurement of the transconductance curve. In the absence of bound charges at the base, as shown in the first panel, no current will flow at any voltage so that the transconductance curve traces a horizontal line. In the middle panel, we assume that single stranded DNA oligomers are immobilized at the base. This will cause a net negative charge from the phosphate backbone to accumulate at the base. The resulting transconductance curve will exhibit slight but measurable departure from horizontal linearity. Finally, if the single stranded DNA were hybridized with its complementary sequence, a net doubling of charge will occur at the base. This will drive the transistor into forward biased full operation and will produce large amplitude and highly nonlinear transconductance curves. The primary method that will be developed are transistors that utilize carbon nanotubes (CNTs). In parallel, a pilot study will be performed in collaboration with Dr. Stephanie Getty and Dr Gunter Kletetschka (NASA and Catholic University) to develop silicon nanowire (SiNW) transistors. Both operate very similar to silicon based metal oxide field effect transistors (MOSFETS). Notably, it has been shown that CNTs have a higher intrinsic mobility than silicon, leading to much higher charge sensitivity when used as a transistor. The geometry of these nanomaterials (cylinders) can better focus electric field than the planar (planks) geometry used in conventional MOSFETs, adding to the sensitivity of the nanodevice. The CNT sys [summary truncated at 7800 characters]
DNA微阵列是在转录水平上高通量监测基因表达、确定全基因组DNA拷贝数变化、识别转录因子靶点、测序以及最近用于分析癌症中的微RNA (miRNA)水平的强大工具。首次报道的DNA微阵列是利用cDNA克隆在尼龙膜上制备的,并使用放射性标记的靶标进行检测。从那时起,许多大型DNA微阵列平台已经开发出来,其中包括双链cDNA,单链短25米(Affymetrix),中型30米(Combimatrix)或长50-70米(Nimblegen或Agilent)寡核苷酸。所有这些方法都依赖于核酸的酶扩增和靶标的荧光标记、杂交和信号放大的各种组合,然后由光学扫描仪检测。虽然基于荧光的DNA微阵列技术取得了重大进展,但这些方法往往耗时,而且依赖于荧光强度的测定,因此灵敏度受到检测少量光子的能力的限制。为了克服这些障碍,我们提出了一种基于晶体管的高灵敏度核酸杂交电子检测系统。该技术类似于微阵列概念,其中每个晶体管都与一个不同的寡核苷酸相关联,并且预计在灵敏度,易用性和小型化能力方面远远超过现有技术。另一个显著的优点是所提出的方法不需要对被检测的核酸进行化学或酶的操作。在场效应晶体管中,源极和漏极之间的电流对电压特性或跨导在很大程度上取决于基极(B)端积累的总电荷。这种效应是很容易理解的,人们可以从跨导曲线的测量中准确地估计基极的电荷量。在基极没有束缚电荷的情况下,如第一张图所示,在任何电压下都不会有电流流过,因此跨导曲线走一条水平线。在中间的面板中,我们假设单链DNA低聚物固定在碱基上。这将导致来自磷酸主链的净负电荷在碱中积累。由此产生的跨导曲线将表现出轻微但可测量的偏离水平线性。最后,如果单链DNA与其互补序列杂交,则在碱基处将发生净电荷加倍。这将驱动晶体管进入正偏全工作,并将产生大振幅和高度非线性的跨导曲线。将开发的主要方法是利用碳纳米管(CNTs)的晶体管。与此同时,将与Stephanie Getty博士和Gunter Kletetschka博士(NASA和天主教大学)合作进行一项试点研究,以开发硅纳米线(SiNW)晶体管。两者的工作原理与硅基金属氧化物场效应晶体管(mosfet)非常相似。值得注意的是,研究表明碳纳米管具有比硅更高的固有迁移率,当用作晶体管时,其电荷灵敏度要高得多。这些纳米材料(圆柱体)的几何结构比传统mosfet中使用的平面(板状)几何结构能更好地聚焦电场,从而增加了纳米器件的灵敏度。然而,碳纳米管系统提出了一些挑战,如纳米管之间的电子特性变化和高温处理,这些可以使用sinw来缓解。DNA微阵列是在转录水平上高通量监测基因表达、确定全基因组DNA拷贝数变化、识别转录因子靶点、测序以及最近用于分析癌症中的微RNA (miRNA)水平的强大工具。首次报道的DNA微阵列是利用cDNA克隆在尼龙膜上制备的,并使用放射性标记的靶标进行检测。从那时起,许多大型DNA微阵列平台已经开发出来,其中包括双链cDNA,单链短25米(Affymetrix),中型30米(Combimatrix)或长50-70米(Nimblegen或Agilent)寡核苷酸。所有这些方法都依赖于核酸的酶扩增和靶标的荧光标记、杂交和信号放大的各种组合,然后由光学扫描仪检测。虽然基于荧光的DNA微阵列技术取得了重大进展,但这些方法往往耗时,而且依赖于荧光强度的测定,因此灵敏度受到检测少量光子的能力的限制。为了克服这些障碍,我们提出了一种基于晶体管的高灵敏度核酸杂交电子检测系统。该技术类似于微阵列概念,其中每个晶体管都与一个不同的寡核苷酸相关联,并且预计在灵敏度,易用性和小型化能力方面远远超过现有技术。另一个显著的优点是所提出的方法不需要对被检测的核酸进行化学或酶的操作。在场效应晶体管中,源极和漏极之间的电流对电压特性或跨导在很大程度上取决于基极(B)端积累的总电荷。这种效应是很容易理解的,人们可以从跨导曲线的测量中准确地估计基极的电荷量。在基极没有束缚电荷的情况下,如第一张图所示,在任何电压下都不会有电流流过,因此跨导曲线走一条水平线。在中间的面板中,我们假设单链DNA低聚物固定在碱基上。这将导致来自磷酸主链的净负电荷在碱中积累。由此产生的跨导曲线将表现出轻微但可测量的偏离水平线性。最后,如果单链DNA与其互补序列杂交,则在碱基处将发生净电荷加倍。这将驱动晶体管进入正偏全工作,并将产生大振幅和高度非线性的跨导曲线。将开发的主要方法是利用碳纳米管(CNTs)的晶体管。与此同时,将与Stephanie Getty博士和Gunter Kletetschka博士(NASA和天主教大学)合作进行一项试点研究,以开发硅纳米线(SiNW)晶体管。两者的工作原理与硅基金属氧化物场效应晶体管(mosfet)非常相似。值得注意的是,研究表明碳纳米管具有比硅更高的固有迁移率,当用作晶体管时,其电荷灵敏度要高得多。这些纳米材料(圆柱体)的几何结构比传统mosfet中使用的平面(板状)几何结构能更好地聚焦电场,从而增加了纳米器件的灵敏度。CNT系统[摘要截短为7800个字符]

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Javed Khan其他文献

Javed Khan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Javed Khan', 18)}}的其他基金

Identification of Novel Mutations In Pediatric Cancers
儿童癌症新突变的鉴定
  • 批准号:
    8763297
  • 财政年份:
  • 资助金额:
    $ 18.13万
  • 项目类别:
Identification of Genes for Predicting Prognosis in Pediatric Cancers
预测儿童癌症预后的基因鉴定
  • 批准号:
    8554048
  • 财政年份:
  • 资助金额:
    $ 18.13万
  • 项目类别:
Developing Novel Therapies for High Risk Pediatric Cancers
开发高危儿童癌症的新疗法
  • 批准号:
    10702412
  • 财政年份:
  • 资助金额:
    $ 18.13万
  • 项目类别:
Identification of Novel Mutations In Pediatric Cancers
儿童癌症新突变的鉴定
  • 批准号:
    8349269
  • 财政年份:
  • 资助金额:
    $ 18.13万
  • 项目类别:
BIOINFORMATICS: SYSTEMS BIOLOGY OF NEUROBLASTOMA
生物信息学:神经母细胞瘤的系统生物学
  • 批准号:
    8349272
  • 财政年份:
  • 资助金额:
    $ 18.13万
  • 项目类别:
Characterization of Xenograft Models of Childhood Cancers
儿童癌症异种移植模型的表征
  • 批准号:
    8552741
  • 财政年份:
  • 资助金额:
    $ 18.13万
  • 项目类别:
Identification of Novel Mutations In Pediatric Cancers
儿童癌症新突变的鉴定
  • 批准号:
    7733402
  • 财政年份:
  • 资助金额:
    $ 18.13万
  • 项目类别:
BIOINFORMATICS: SYSTEMS BIOLOGY OF NEUROBLASTOMA
生物信息学:神经母细胞瘤的系统生物学
  • 批准号:
    7733406
  • 财政年份:
  • 资助金额:
    $ 18.13万
  • 项目类别:
Developing Novel Therapies for Neuroblastoma and Rhabdomyosarcoma
开发神经母细胞瘤和横纹肌肉瘤的新疗法
  • 批准号:
    10014450
  • 财政年份:
  • 资助金额:
    $ 18.13万
  • 项目类别:
Developing Novel Therapies for Neuroblastoma and Rhabdomyosarcoma
开发神经母细胞瘤和横纹肌肉瘤的新疗法
  • 批准号:
    9556370
  • 财政年份:
  • 资助金额:
    $ 18.13万
  • 项目类别:

相似国自然基金

帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
  • 批准号:
    32170319
  • 批准年份:
    2021
  • 资助金额:
    58.00 万元
  • 项目类别:
    面上项目
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
ID1 (Inhibitor of DNA binding 1) 在口蹄疫病毒感染中作用机制的研究
  • 批准号:
    31672538
  • 批准年份:
    2016
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
番茄EIN3-binding F-box蛋白2超表达诱导单性结实和果实成熟异常的机制研究
  • 批准号:
    31372080
  • 批准年份:
    2013
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目
P53 binding protein 1 调控乳腺癌进展转移及化疗敏感性的机制研究
  • 批准号:
    81172529
  • 批准年份:
    2011
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
DBP(Vitamin D Binding Protein)在多发性硬化中的作用和相关机制的蛋白质组学研究
  • 批准号:
    81070952
  • 批准年份:
    2010
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目
研究EB1(End-Binding protein 1)的癌基因特性及作用机制
  • 批准号:
    30672361
  • 批准年份:
    2006
  • 资助金额:
    24.0 万元
  • 项目类别:
    面上项目

相似海外基金

Exploring the role of RuBisCo binding domains in algal carbon fixation
探索 RuBisCo 结合域在藻类固碳中的​​作用
  • 批准号:
    2885461
  • 财政年份:
    2023
  • 资助金额:
    $ 18.13万
  • 项目类别:
    Studentship
A machine learning approach to identify carbon dioxide-binding proteins for sustainability and health
一种机器学习方法来识别二氧化碳结合蛋白以实现可持续发展和健康
  • 批准号:
    2838427
  • 财政年份:
    2023
  • 资助金额:
    $ 18.13万
  • 项目类别:
    Studentship
The identification of carbon dioxide-binding proteins
二氧化碳结合蛋白的鉴定
  • 批准号:
    BB/S015132/1
  • 财政年份:
    2019
  • 资助金额:
    $ 18.13万
  • 项目类别:
    Research Grant
Carbon dioxide binding proteins that enhance yield in high value crops
二氧化碳结合蛋白可提高高价值作物的产量
  • 批准号:
    2118867
  • 财政年份:
    2018
  • 资助金额:
    $ 18.13万
  • 项目类别:
    Studentship
Binding and Transformation of Carbon Dioxide with Novel Lewis Acid-Lewis Base Chelates
二氧化碳与新型路易斯酸-路易斯碱螯合物的结合和转化
  • 批准号:
    496845-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 18.13万
  • 项目类别:
    University Undergraduate Student Research Awards
Binding and Transformation of Carbon Dioxide with Novel Lewis Acid-Lewis Base Chelates
二氧化碳与新型路易斯酸-路易斯碱螯合物的结合和转化
  • 批准号:
    482863-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 18.13万
  • 项目类别:
    University Undergraduate Student Research Awards
Monoamine Oxidase A Binding in Impulsive Aggressive Individuals with Borderline Personality Disorder and Antisocial Personality Disorder: A Carbon 11-labeled Harmine PET Study
单胺氧化酶 A 与边缘性人格障碍和反社会人格障碍的冲动攻击性个体的结合:碳 11 标记的 Harmine PET 研究
  • 批准号:
    213516
  • 财政年份:
    2010
  • 资助金额:
    $ 18.13万
  • 项目类别:
    Fellowship Programs
Electrical Detection of Protein Binding at DNA Modified Carbon Nanotube Field Effect Transistors
DNA 修饰碳纳米管场效应晶体管上蛋白质结合的电学检测
  • 批准号:
    0936923
  • 财政年份:
    2009
  • 资助金额:
    $ 18.13万
  • 项目类别:
    Standard Grant
Transport properties of carbon-nanotube devices studied by tight-binding and ab-initio calculations
通过紧束缚和从头计算研究碳纳米管器件的输运特性
  • 批准号:
    5323326
  • 财政年份:
    2001
  • 资助金额:
    $ 18.13万
  • 项目类别:
    Emmy Noether International Fellowships
A mechanistic study of the influence of dissolved organic carbon on the bioavailability of mercury and cadmium in fresh water, using an aquatic amphipod, a second project on cell wall binding and
使用水生片足类动物,研究溶解有机碳对淡水中汞和镉的生物利用度的影响,这是关于细胞壁结合和细胞壁结合的第二个项目
  • 批准号:
    116919-1995
  • 财政年份:
    1998
  • 资助金额:
    $ 18.13万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了