Response Of Renal Cells To Osmotic Stress

肾细胞对渗透压的反应

基本信息

项目摘要

Reasoning that proteins that physically associate with the osmoprotective transcription factor TonEBP/OREBP/NFAT5 (TonEBP) are likely to regulate or support its activity we used proteomics to identify them. We stably expressed amino acids 1-547 of TonEBP in HEK 293 cells and immunoprecipitated it plus associated proteins from the nuclei of cells exposed to high NaCl, thereby identifying 14 associated proteins. The associated proteins fall into several classes: 1) DNA-dependent protein kinase, both its catalytic subunit and regulatory subunit, Ku86; 2) RNA helicases, namely RNA helicase A, nucleolar RNA helicase II/Gu, and DEAD-box RNA helicase p72; 3) small or heterogeneous nuclear ribonucleoproteins (snRNPs or hnRNPs), namely U5 snRNP-specific 116 kDa protein, U5 snRNP-specific 200 kDa protein, hnRNP U, hnRNP M, hnRNP K, and hnRNP F; 4) heat shock proteins, namely Hsp90beta and Hsc70; and 5) poly(ADP-ribose) polymerase-1 (PARP-1). We confirmed identification of most of the proteins by Western analysis and also demonstrated by electrophoretic mobility-shift assay that they are present in the large complex that binds specifically along with TonEBP/OREBP to its cognate DNA element. In addition, we found that PARP-1 and Hsp90 modulate TonEBP/OREBP activity. PARP-1 expression reduces TonEBP/OREBP transcriptional activity and the activity of its transactivating domain. Hsp90 enhances those activities and sustains the increased abundance of TonEBP/OREBP protein in cells exposed to high NaCl. We are currently extending these proteomic studies to identify additional proteins that associate with TonEBP-1-1531 and also to identify amino acids in TonEBP that are phosphorylated by high salt. Until now we have identified several phosphorylated amino acids and have confirmed with phospho-specific antibodies that phosphorylation of some of them is osmotically regulated. Also, mutation of those amino acids affects osmotic regulation of TonEBP. Glycerophosphocholine (GPC) is an osmoprotective compatible and counteracting organic osmolyte that accumulates in renal inner medullary cells in response to high NaCl and urea. We previously found that high NaCl and/or urea increases GPC in renal (Madin-Darby canine kidney, MDCK) cells and that the GPC is derived from phosphatidylcholine, catalyzed by a phospholipase that was not identified at that time. Neuropathy target esterase (NTE) was recently shown to be a phospholipase B that catalyzes production of GPC from phosphatidylcholine. Therefore, we tested whether NTE contributes to the high NaCl-induced increase of GPC synthesis in renal cells, finding that it does. In mouse inner medullary collecting duct (mIMCD3) cells, high NaCl increases NTE mRNA and protein. Diisopropyl fluorophosphate, which inhibits NTE esterase activity, reduces GPC accumulation, as does an siRNA that specifically reduces NTE protein abundance. The 20-h half-life of NTE mRNA is unaffected by high NaCl, but knockdown of TonEBP by a specific siRNA inhibits the high NaCl-induced increase of NTE mRNA. Further, the lower renal inner medullary interstitial NaCl concentration that occurs chronically in ClCK1-/- mice and acutely in normal mice given furosemide is associated with lower NTE mRNA and protein. Thus, high NaCl increases transcription of NTE, mediated by TonEBP, and the resultant increase of NTE expression contributes to increased production and accumulation of GPC in mammalian renal cells in tissue culture and in vivo. We previously found that high urea and/or NaCl inhibit the activity of a phosphodiesterase (GPC-PDE) that catalyzes breakdown of GPC to choline and glycerol phosphate, and that this contributes to osmotic induction of GPC. In current unpublished studies we have identified the phosphodiesterase as Gdpd5. Recombinant Gdpd5 immunoprecipitated from mIMCD3 cells has GPC-PDE activity and the specific activity is lower if the cells have been exposed to high NaCl or urea. Further, high salt reduces Gdpd5 mRNA abundance and a specific siRNA against Gdpd5 increases GPC. Thus, Gdpd5 is a GPC-PDE, whose activity contributes to osmotic regulation of GPC. We have identified several more signaling molecules that regulate TonEBP activity. c-Jun and c-Fos bind to an AP-1 site adjacent to the OREs in many genes that are regulated by TonEBP, and presence of the site and of c-fos and c-Jun activity are necessary for full activation of TonEBP by high salt. Phospholipase C gamma binds to a specific site in TonEBP, also contributing to TonEBP activity. Finally, we previously found that hyperosmolality causes DNA breaks and oxidative stress both in cell culture and in kidney medullas in vivo. DNA damage and oxidative stress are associated with cellular senescence, most striking in aging and in cancer. We have now found that high salt causes cellular senescence in tissue culture and that age-associated accumulation of a senescent cells is accelerated in kidney medullas of normal mice, as well as in C. Elegans exposed to high salt. Thus, hyperosmolality not only causes DNA damage and oxidative stress, but also causes cellular senescence.
推理与细胞保护性转录因子TonEBP/OREBP/NFAT 5(TonEBP)物理相关的蛋白质可能调节或支持其活性,我们使用蛋白质组学来鉴定它们。 我们在HEK 293细胞中稳定表达TonEBP的氨基酸1-547,并将其与来自暴露于高NaCl的细胞核的相关蛋白免疫沉淀,从而鉴定出14种相关蛋白。相关蛋白分为几类:1)DNA依赖性蛋白激酶,其催化亚基和调节亚基,Ku 86; 2)RNA解旋酶,即RNA解旋酶A、核仁RNA解旋酶II/Gu和DEAD盒RNA解旋酶p72; 3)小的或异质的核核糖核蛋白(snRNP或hnRNP),即U 5 snRNP特异性116 kDa蛋白、U 5 snRNP特异性200 kDa蛋白、hnRNP U、hnRNP M、hnRNP K和hnRNP F;和5)聚(ADP-核糖)聚合酶-1(PARP-1)。我们通过Western分析证实了大多数蛋白质的鉴定,并通过电泳迁移率变化试验证明它们存在于与TonEBP/OREBP沿着特异性结合到其同源DNA元件的大复合物中。此外,我们发现PARP-1和Hsp 90调节TonEBP/OREBP活性。PARP-1表达降低TonEBP/OREBP转录活性及其反式激活结构域的活性。热休克蛋白90增强这些活动,并维持增加的丰度TonEBP/OREBP蛋白在细胞暴露于高NaCl。 我们目前正在扩展这些蛋白质组学研究,以确定与TonEBP-1-1531相关的其他蛋白质,并确定TonEBP中被高盐磷酸化的氨基酸。 到目前为止,我们已经确定了几个磷酸化的氨基酸,并已证实与磷酸特异性抗体,其中一些磷酸化的调节。 此外,这些氨基酸的突变影响TonEBP的渗透调节。 甘油磷酸胆碱(GPC)是一种保护肾脏的相容性和抵消性有机渗透剂,在高NaCl和尿素的反应中在肾内髓细胞中积累。我们先前发现高NaCl和/或尿素增加肾(Madin-Darby犬肾,MDCK)细胞中的GPC,并且GPC来源于磷脂酰胆碱,由当时未鉴定的磷脂酶催化。神经病靶向酯酶(NTE)最近被证明是一种磷脂酶B,可催化磷脂酰胆碱产生GPC。因此,我们测试了NTE是否有助于肾细胞中高NaCl诱导的GPC合成增加,发现它确实如此。在小鼠内髓集合管(mIMCD 3)细胞,高NaCl增加NTE mRNA和蛋白。抑制NTE酯酶活性的氟磷酸二异丙酯减少GPC积累,特异性降低NTE蛋白丰度的siRNA也是如此。NTE mRNA的20小时半衰期不受高NaCl的影响,但通过特异性siRNA敲低TonEBP抑制高NaCl诱导的NTE mRNA增加。此外,较低的肾内髓间质NaCl浓度,慢性发生在ClCK 1-/-小鼠和急性在正常小鼠给予呋塞米与较低的NTE mRNA和蛋白质。因此,高NaCl增加了由TonEBP介导的NTE的转录,并且由此产生的NTE表达的增加有助于组织培养和体内哺乳动物肾细胞中GPC的产生和积累增加。 我们先前发现,高尿素和/或NaCl抑制磷酸二酯酶(GPC-PDE)的活性,该酶催化GPC分解为胆碱和磷酸甘油,并且这有助于GPC的渗透诱导。在目前未发表的研究中,我们已经确定磷酸二酯酶为Gdpd 5。 从mIMCD 3细胞免疫沉淀的重组Gdpd 5具有GPC-PDE活性,并且如果细胞已经暴露于高NaCl或尿素,则比活性较低。 此外,高盐降低了Gdpd 5 mRNA丰度,并且针对Gdpd 5的特异性siRNA增加了GPC。 因此,Gdpd 5是GPC-PDE,其活性有助于GPC的渗透调节。 我们已经确定了几种调节TonEBP活性的信号分子。 c-Jun和c-Fos与许多受TonEBP调节的基因中邻近ORE的AP-1位点结合,并且该位点以及c-fos和c-Jun活性的存在对于高盐完全激活TonEBP是必需的。 磷脂酶C γ与TonEBP中的特定位点结合,也有助于TonEBP活性。 最后,我们以前发现,高渗导致DNA断裂和氧化应激在细胞培养和在体内的肾脏髓质。 DNA损伤和氧化应激与细胞衰老有关,在衰老和癌症中最引人注目。 我们现在已经发现,高盐会导致组织培养中的细胞衰老,衰老细胞的年龄相关积累在正常小鼠的肾髓质中加速,在C.暴露在高盐环境中的优雅。 因此,高渗不仅导致DNA损伤和氧化应激,而且还导致细胞衰老。

项目成果

期刊论文数量(38)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mitochondrial reactive oxygen species contribute to high NaCl-induced activation of the transcription factor TonEBP/OREBP.
Living with DNA Breaks is an Everyday Reality for Cells Adapted to High NaCl
对于适应高氯化钠的细胞来说,DNA 断裂是每天的现实
  • DOI:
    10.4161/cc.3.5.869
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    N. Dmitrieva;M. Burg
  • 通讯作者:
    M. Burg
Drying and salting send different messages.
干燥和腌制会发出不同的信息。
  • DOI:
    10.1113/jphysiol.2004.068064
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ferraris,JoanD;Burg,MauriceB
  • 通讯作者:
    Burg,MauriceB
Proliferation and osmotic tolerance of renal inner medullary epithelial cells in vivo and in cell culture.
体内和细胞培养中肾内髓质上皮细胞的增殖和渗透耐受性。
Factors affecting counteraction by methylamines of urea effects on aldose reductase.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MAURICE BENJAM BURG其他文献

MAURICE BENJAM BURG的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MAURICE BENJAM BURG', 18)}}的其他基金

Response Of Renal Cells To Osmotic Stress
肾细胞对渗透压的反应
  • 批准号:
    6690489
  • 财政年份:
  • 资助金额:
    $ 159.89万
  • 项目类别:
Response Of Renal Cells To Osmotic Stress
肾细胞对渗透压的反应
  • 批准号:
    7321555
  • 财政年份:
  • 资助金额:
    $ 159.89万
  • 项目类别:
Hyperosmolality-induced damage to cells
高渗透压引起的细胞损伤
  • 批准号:
    8558068
  • 财政年份:
  • 资助金额:
    $ 159.89万
  • 项目类别:
Regulation of the osmoprotective transcription factor NFAT5
渗透保护转录因子 NFAT5 的调节
  • 批准号:
    8558070
  • 财政年份:
  • 资助金额:
    $ 159.89万
  • 项目类别:
Hyperosmolality-induced damage to cells
高渗透压引起的细胞损伤
  • 批准号:
    8344924
  • 财政年份:
  • 资助金额:
    $ 159.89万
  • 项目类别:
Response Of Renal Cells To Osmotic Stress
肾细胞对渗透压的反应
  • 批准号:
    7594383
  • 财政年份:
  • 资助金额:
    $ 159.89万
  • 项目类别:
Regulation of the osmoprotective transcription factor NFAT5
渗透保护转录因子 NFAT5 的调节
  • 批准号:
    8939889
  • 财政年份:
  • 资助金额:
    $ 159.89万
  • 项目类别:
Response Of Renal Cells To Osmotic Stress
肾细胞对渗透压的反应
  • 批准号:
    6541687
  • 财政年份:
  • 资助金额:
    $ 159.89万
  • 项目类别:
Cellular responses to high NaCl; osmoprotective organic osmolytes
细胞对高氯化钠的反应;
  • 批准号:
    8558069
  • 财政年份:
  • 资助金额:
    $ 159.89万
  • 项目类别:
RESPONSE OF RENAL CELLS TO OSMOTIC STRESS
肾细胞对渗透压的反应
  • 批准号:
    6290397
  • 财政年份:
  • 资助金额:
    $ 159.89万
  • 项目类别:

相似国自然基金

靶向递送一氧化碳调控AGE-RAGE级联反应促进糖尿病创面愈合研究
  • 批准号:
    JCZRQN202500010
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
对香豆酸抑制AGE-RAGE-Ang-1通路改善海马血管生成障碍发挥抗阿尔兹海默病作用
  • 批准号:
    2025JJ70209
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
AGE-RAGE通路调控慢性胰腺炎纤维化进程的作用及分子机制
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0 万元
  • 项目类别:
    面上项目
甜茶抑制AGE-RAGE通路增强突触可塑性改善小鼠抑郁样行为
  • 批准号:
    2023JJ50274
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
蒙药额尔敦-乌日勒基础方调控AGE-RAGE信号通路改善术后认知功能障碍研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
LncRNA GAS5在2型糖尿病动脉粥样硬化中对AGE-RAGE 信号通路上相关基因的调控作用及机制研究
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
  • 批准号:
    81973577
  • 批准年份:
    2019
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
AGE/RAGE通路microRNA编码基因多态性与2型糖尿病并发冠心病的关联研究
  • 批准号:
    81602908
  • 批准年份:
    2016
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
高血糖激活滑膜AGE-RAGE-PKC轴致骨关节炎易感的机制研究
  • 批准号:
    81501928
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

The Phenomenon of Stem Cell Aging according to Methylation Estimates of Age After Hematopoietic Stem Cell Transplantation
根据造血干细胞移植后甲基化年龄估算干细胞衰老现象
  • 批准号:
    23K07844
  • 财政年份:
    2023
  • 资助金额:
    $ 159.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of Age-dependent Functional Changes in Skeletal Muscle CB1 Receptors by an in Vitro Model of Aging-related Muscle Atrophy
通过衰老相关性肌肉萎缩的体外模型分析骨骼肌 CB1 受体的年龄依赖性功能变化
  • 批准号:
    22KJ2960
  • 财政年份:
    2023
  • 资助金额:
    $ 159.89万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Joint U.S.-Japan Measures for Aging and Dementia Derived from the Prevention of Age-Related and Noise-induced Hearing Loss
美日针对预防与年龄相关和噪声引起的听力损失而导致的老龄化和痴呆症联合措施
  • 批准号:
    23KK0156
  • 财政年份:
    2023
  • 资助金额:
    $ 159.89万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
The Effects of Muscle Fatigability on Gait Instability in Aging and Age-Related Falls Risk
肌肉疲劳对衰老步态不稳定性和年龄相关跌倒风险的影响
  • 批准号:
    10677409
  • 财政年份:
    2023
  • 资助金额:
    $ 159.89万
  • 项目类别:
Characterizing gut physiology by age, frailty, and sex: assessing the role of the aging gut in "inflamm-aging"
按年龄、虚弱和性别表征肠道生理学特征:评估衰老肠道在“炎症衰老”中的作用
  • 批准号:
    497927
  • 财政年份:
    2023
  • 资助金额:
    $ 159.89万
  • 项目类别:
Deciphering the role of osteopontin in the aging eye and age-related macular degeneration
破译骨桥蛋白在眼睛老化和年龄相关性黄斑变性中的作用
  • 批准号:
    10679287
  • 财政年份:
    2023
  • 资助金额:
    $ 159.89万
  • 项目类别:
Role of AGE/RAGEsignaling as a driver of pathological aging in the brain
AGE/RAGE信号传导作为大脑病理性衰老驱动因素的作用
  • 批准号:
    10836835
  • 财政年份:
    2023
  • 资助金额:
    $ 159.89万
  • 项目类别:
Elucidation of the protein kinase NLK-mediated aging mechanisms and treatment of age-related diseases
阐明蛋白激酶NLK介导的衰老机制及年龄相关疾病的治疗
  • 批准号:
    23K06378
  • 财政年份:
    2023
  • 资助金额:
    $ 159.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Underlying mechanisms of age-related changes in ingestive behaviors: From the perspective of the aging brain and deterioration of the gustatory system.
与年龄相关的摄入行为变化的潜在机制:从大脑老化和味觉系统退化的角度来看。
  • 批准号:
    23K10845
  • 财政年份:
    2023
  • 资助金额:
    $ 159.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Targeting Age-Activated Proinflammatory Chemokine Signaling by CCL2/11 to Enhance Skeletal Muscle Regeneration in Aging
通过 CCL2/11 靶向年龄激活的促炎趋化因子信号传导以增强衰老过程中的骨骼肌再生
  • 批准号:
    478877
  • 财政年份:
    2023
  • 资助金额:
    $ 159.89万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了