Computational framework for analysis of microarray gene expression data

微阵列基因表达数据分析的计算框架

基本信息

  • 批准号:
    7537700
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-01-01 至 2010-12-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Identification of transcripts that are differentially regulated in response to studied experimental conditions is one of critical steps in analysis of DNA microarray data. Currently employed statistical approaches become particularly ineffective for experiments with small number of biological replicates, which are prevalent in the differential expression studies. We propose to develop and validate a novel numerical framework for identification of differentially expressed transcripts, with emphasis on analysis of experiments with small number of replicates and genes with moderate levels of expression. The proposed approach is based on a novel, non-parametric method for assessment of noise distributions in microarray data, which are derived directly from the analyzed data set. Three distinct, univariate and multivariate methods for identification of differentially expressed genes will be implemented and their results will be compared to the results of leading advanced statistical methods. In the Phase I feasibility study we will analyze differential gene expression between at least nine normal tissues with varying levels of similarity, in rat and mouse. Publicly available data from SymAtlas database (Genomics Institute of the Novartis Research Foundation), obtained with Affymetrix microarrays, will be employed. The utility of newly developed numerical methods will be established through biological and/or experimental validation of identified genomic biomarkers using functional analysis (if functional annotation is available) and/or quantitative polymerase chain reaction analysis. PUBLIC HEALTH RELEVANCE: DNA microarray technology enables simultaneous profiling of thousands of transcripts expressed in particular organism, cells or tissues. Its current applications include gene profiling, gene regulation studies, disease biomarker discovery, toxicogenomics, pharmacogenomics, and clinical diagnostics and prognosis. Despite recent impressive technological advances, major bottlenecks to the realization of the full potential of the microarray technology exist and include incomplete functional gene annotation and the lack of effective computational data analysis tools. The analysis methods developed in this project will improve the ability to reliably identify differentially expressed genes in experiments with small number of biological replicates, which will improve the overall effectiveness of this technology and reduce the cost of microarray gene expression studies.
描述(由申请人提供):鉴定不同实验条件下差异调节的转录本是分析DNA微阵列数据的关键步骤之一。目前采用的统计方法对于在差异表达研究中普遍存在的少量生物重复实验尤其无效。我们建议开发和验证一个新的数字框架来鉴定差异表达转录本,重点分析少量重复和中等表达水平的基因的实验。提出的方法是基于一种新的非参数方法来评估微阵列数据中的噪声分布,这些噪声直接来自分析的数据集。将实施三种不同的、单变量和多变量的方法来鉴定差异表达基因,并将其结果与领先的先进统计方法的结果进行比较。在I期可行性研究中,我们将在大鼠和小鼠中分析至少9种具有不同程度相似性的正常组织之间的差异基因表达。使用Affymetrix微阵列获得的SymAtlas数据库(诺华研究基金会基因组学研究所)的公开数据。新开发的数值方法的实用性将通过使用功能分析(如果有功能注释)和/或定量聚合酶链反应分析对已确定的基因组生物标志物进行生物学和/或实验验证来建立。公共卫生相关性:DNA微阵列技术能够同时分析特定生物体、细胞或组织中表达的数千个转录本。它目前的应用包括基因分析、基因调控研究、疾病生物标志物发现、毒物基因组学、药物基因组学以及临床诊断和预后。尽管最近取得了令人印象深刻的技术进步,但实现微阵列技术全部潜力的主要瓶颈仍然存在,包括不完整的功能基因注释和缺乏有效的计算数据分析工具。本项目开发的分析方法将提高在少量生物重复实验中可靠识别差异表达基因的能力,这将提高该技术的整体有效性,降低微阵列基因表达研究的成本。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dariusz Wroblewski其他文献

Dariusz Wroblewski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dariusz Wroblewski', 18)}}的其他基金

Head mounted display apparatus for visual field test
用于视野测试的头戴式显示装置
  • 批准号:
    6831800
  • 财政年份:
    2004
  • 资助金额:
    $ 15万
  • 项目类别:
Head mounted display apparatus for visual field test
用于视野测试的头戴式显示装置
  • 批准号:
    7405540
  • 财政年份:
    2004
  • 资助金额:
    $ 15万
  • 项目类别:
Head mounted display apparatus for visual field test
用于视野测试的头戴式显示装置
  • 批准号:
    7561718
  • 财政年份:
    2004
  • 资助金额:
    $ 15万
  • 项目类别:
Head mounted display apparatus for visual field test
用于视野测试的头戴式显示装置
  • 批准号:
    7030747
  • 财政年份:
    2004
  • 资助金额:
    $ 15万
  • 项目类别:
Diagnostic Aid Software for Visual Field Test
视野测试诊断辅助软件
  • 批准号:
    6582662
  • 财政年份:
    2003
  • 资助金额:
    $ 15万
  • 项目类别:
Knowledge discovery portal for biomedical research
生物医学研究的知识发现门户
  • 批准号:
    6689165
  • 财政年份:
    2003
  • 资助金额:
    $ 15万
  • 项目类别:
Diagnostic aid software for the visual field test
用于视野测试的诊断辅助软件
  • 批准号:
    7120029
  • 财政年份:
    2002
  • 资助金额:
    $ 15万
  • 项目类别:
Diagnostic aid software for the visual field test
用于视野测试的诊断辅助软件
  • 批准号:
    6882489
  • 财政年份:
    2002
  • 资助金额:
    $ 15万
  • 项目类别:
EXPERT HYBRID SYSTEM FOR PREDICTION OF PROTEIN STRUCTURE
用于预测蛋白质结构的专家混合系统
  • 批准号:
    2536717
  • 财政年份:
    1998
  • 资助金额:
    $ 15万
  • 项目类别:
AUTOMATED ANALYSIS OF NMR SPECTRA OF URINE
尿液核磁共振谱的自动分析
  • 批准号:
    2023426
  • 财政年份:
    1997
  • 资助金额:
    $ 15万
  • 项目类别:

相似国自然基金

企业绩效评价的DEA-Benchmarking方法及动态博弈研究
  • 批准号:
    70571028
  • 批准年份:
    2005
  • 资助金额:
    16.5 万元
  • 项目类别:
    面上项目

相似海外基金

An innovative EDI data, insights & peer benchmarking platform enabling global business leaders to build data-led EDI strategies, plans and budgets.
创新的 EDI 数据、见解
  • 批准号:
    10100319
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Collaborative R&D
BioSynth Trust: Developing understanding and confidence in flow cytometry benchmarking synthetic datasets to improve clinical and cell therapy diagnos
BioSynth Trust:发展对流式细胞仪基准合成数据集的理解和信心,以改善临床和细胞治疗诊断
  • 批准号:
    2796588
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Studentship
Elements: CausalBench: A Cyberinfrastructure for Causal-Learning Benchmarking for Efficacy, Reproducibility, and Scientific Collaboration
要素:CausalBench:用于因果学习基准测试的网络基础设施,以实现有效性、可重复性和科学协作
  • 批准号:
    2311716
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Benchmarking collisional rates and hot electron transport in high-intensity laser-matter interaction
高强度激光-物质相互作用中碰撞率和热电子传输的基准测试
  • 批准号:
    2892813
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Studentship
Collaborative Research: SHF: Medium: A Comprehensive Modeling Framework for Cross-Layer Benchmarking of In-Memory Computing Fabrics: From Devices to Applications
协作研究:SHF:Medium:内存计算结构跨层基准测试的综合建模框架:从设备到应用程序
  • 批准号:
    2347024
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: BeeHive: A Cross-Problem Benchmarking Framework for Network Biology
合作研究:BeeHive:网络生物学的跨问题基准框架
  • 批准号:
    2233969
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
FET: Medium: Quantum Algorithms, Complexity, Testing and Benchmarking
FET:中:量子算法、复杂性、测试和基准测试
  • 批准号:
    2311733
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Establishing and benchmarking advanced methods to comprehensively characterize somatic genome variation in single human cells
建立先进方法并对其进行基准测试,以全面表征单个人类细胞的体细胞基因组变异
  • 批准号:
    10662975
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
Collaborative Research: BeeHive: A Cross-Problem Benchmarking Framework for Network Biology
合作研究:BeeHive:网络生物学的跨问题基准框架
  • 批准号:
    2233968
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Benchmarking Quantum Advantage
量子优势基准测试
  • 批准号:
    EP/Y004418/1
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了