NEURAL MECHANISMS OF SPATIAL WORKING MEMORY

空间工作记忆的神经机制

基本信息

  • 批准号:
    7821903
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-30 至 2011-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): This application addresses Broad Challenge Area (15): Translational Science and Specific Challenge Topic, 15-MH-109: Prefrontal cortex regulation of higher brain function and complex behaviors. The goal of this project is to understand the neural mechanisms that underlie active maintenance in working memory (WM). WM is a core component of most domains of higher cognition and is critically important for executive control. WM dysfunction is thought to play a major role in the cognitive impairments seen in a wide-range of disorders, including ADHD, Alzheimer's disease, and most prominently, schizophrenia. Progress in understanding the neuronal mechanisms underlying normal and pathological WM function would constitute a major advance in basic science, and will serve as a launch pad for studies in clinical populations, such as patients with schizophrenia, for which WM dysfunction is thought to be a major determinant of more widespread cognitive impairment. Our approach is to conduct directly matched imaging experiments in humans and non-human primates using an identical long-duration memory task in both species, and then to conduct multi-unit recording in monkeys again using the same task. Critically, these studies will be designed to provide detailed information regarding the neural mechanisms that result in the decay of stored information over time (i.e., WM delay), and how this translates into behavioral change. Leverage on these issues will be provided by asking which neurons, circuits, and areas have activity that is correlated with the normal loss of stored WM content over time, and/or correlated with the induced perturbations that result from pharmacologic interventions. We will test whether human and non-human primates show similar neuronal patterns in this regard, and we will use multi-unit recording to test specific hypotheses derived from computational models of attractor networks. Our multi- species, multi-method approach will bridge the gap between computational models, single unit recording studies in non-human primates, and human neuroimaging data. By forming this bridge, we will greatly advance our understanding of the mechanisms of working memory in human cognition. Working memory is a high level function that is absolutely critical to normal cognitive function, and is often disturbed in psychiatric illness. We will investigate the normal and pathological function of spatial working memory in the monkey using a variety of methodologies, and then test the relevance of what we have learned in humans using imaging experiments. The result will be a more principled approach to pharmacologic and other therapies for psychiatric illness.
描述(由申请人提供):本申请涉及广泛挑战领域(15):转化科学和特定挑战主题,15-MH-109:高级脑功能和复杂行为的前额叶皮层调节。这个项目的目标是了解工作记忆(WM)中主动维持的神经机制。工作记忆是高级认知的核心组成部分,对执行控制至关重要。WM功能障碍被认为在广泛的疾病中所见的认知障碍中起主要作用,包括ADHD,阿尔茨海默病,最突出的是精神分裂症。在理解正常和病理WM功能的神经元机制的进展将构成基础科学的重大进展,并将作为临床人群,如精神分裂症患者,WM功能障碍被认为是更广泛的认知障碍的主要决定因素的研究的发射台。我们的方法是在人类和非人类灵长类动物中进行直接匹配的成像实验,在两个物种中使用相同的长时间记忆任务,然后再次使用相同的任务在猴子中进行多单元记录。重要的是,这些研究将被设计为提供有关导致存储信息随时间衰减的神经机制的详细信息(即,WM延迟),以及这如何转化为行为变化。通过询问哪些神经元、回路和区域的活动与随着时间的推移储存的WM含量的正常损失相关,和/或与由药理学干预引起的诱导扰动相关,将提供对这些问题的利用。我们将测试人类和非人类灵长类动物在这方面是否表现出类似的神经元模式,我们将使用多单元记录来测试来自吸引子网络计算模型的特定假设。我们的多物种、多方法方法将弥合计算模型、非人类灵长类动物的单个单位记录研究和人类神经成像数据之间的差距。通过建立这座桥梁,我们将大大推进我们对人类认知中工作记忆机制的理解。工作记忆是一种高级功能,对正常的认知功能至关重要,并且经常在精神疾病中受到干扰。我们将使用各种方法来研究猴子空间工作记忆的正常和病理功能,然后使用成像实验来测试我们在人类中所学到的知识的相关性。其结果将是一个更有原则的方法,以药理学和其他治疗精神疾病。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lawrence H Snyder其他文献

Lawrence H Snyder的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lawrence H Snyder', 18)}}的其他基金

THE DYNAMICS OF LONG RANGE CORRELATIONS IN CORTEX: SINGLE UNITS AND OXYGEN
皮层中长程相关性的动力学:单个单元和氧气
  • 批准号:
    9457753
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
FUNCTIONAL CONNECTIVITY IN THE BRAIN: A NEW APPROACH
大脑的功能连接:一种新方法
  • 批准号:
    8994301
  • 财政年份:
    2014
  • 资助金额:
    $ 50万
  • 项目类别:
FUNCTIONAL CONNECTIVITY IN THE BRAIN: A NEW APPROACH
大脑的功能连接:一种新方法
  • 批准号:
    8614685
  • 财政年份:
    2014
  • 资助金额:
    $ 50万
  • 项目类别:
A MICRO-ELECTRODE STUDY OF OXYGEN-BASED FUNCTIONAL CONNECTIVITY
基于氧的功能连接的微电极研究
  • 批准号:
    8258738
  • 财政年份:
    2011
  • 资助金额:
    $ 50万
  • 项目类别:
A MICRO-ELECTRODE STUDY OF OXYGEN-BASED FUNCTIONAL CONNECTIVITY
基于氧的功能连接的微电极研究
  • 批准号:
    8093092
  • 财政年份:
    2011
  • 资助金额:
    $ 50万
  • 项目类别:
VISUAL MOTOR TRANSFORMATION IN CORTEX
皮层中的视觉运动转换
  • 批准号:
    7882800
  • 财政年份:
    2009
  • 资助金额:
    $ 50万
  • 项目类别:
NEURAL MECHANISMS OF SPATIAL WORKING MEMORY
空间工作记忆的神经机制
  • 批准号:
    7938038
  • 财政年份:
    2009
  • 资助金额:
    $ 50万
  • 项目类别:
In Vivo Imaging of Brain Connectivity
大脑连接的体内成像
  • 批准号:
    6957460
  • 财政年份:
    2005
  • 资助金额:
    $ 50万
  • 项目类别:
In Vivo Imaging of Brain Connectivity
大脑连接的体内成像
  • 批准号:
    7099501
  • 财政年份:
    2005
  • 资助金额:
    $ 50万
  • 项目类别:
VISUAL-MOTOR TRANSFORMATIONS IN PARIETAL CORTEX
顶叶皮层的视觉运动转换
  • 批准号:
    6350875
  • 财政年份:
    2000
  • 资助金额:
    $ 50万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了