FUNCTIONAL CONNECTIVITY IN THE BRAIN: A NEW APPROACH

大脑的功能连接:一种新方法

基本信息

  • 批准号:
    8614685
  • 负责人:
  • 金额:
    $ 38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-02-01 至 2019-01-31
  • 项目状态:
    已结题

项目摘要

ABSTRACT Oxygen levels within the human brain fluctuate without any apparent external driver. Unexpectedly, these intrinsic fluctuations are correlated among distant regions, forming "resting state networks". These networks appear to be relevant to brain function. Resting state data can provide evidence for functional connections between brain regions. Aspects of behavioral performance can be predicted by the ongoing level of slow correlated BOLD fluctuations. Finally, multiple neurological and psychiatric disorders including autism and schizophrenia are associated with abnormalities in resting state networks. Despite their potential importance for understanding normal and disordered cognition, resting state networks remain a poorly understood phenomenon in human cognitive neuroscience. We seek to better understand the origin and significance of correlated oxygen fluctuations by characterizing them at high spatial and temporal resolution and identifying the electrophysiological signals associated with them both at rest and during task performance. We will use oxygen polarography in a novel way. Guided initially by resting state fMRI scans, we will insert multiple platinum microelectrodes into a macaque brain to verify and characterize correlated fluctuations in oxygen concentration. We will record simultaneous electrophysiological signals from these electrodes and ask what portion of the electrophysiological spectrum (slow cortical potentials, local field potentials, multi-unit activity) is associated with task-driven and/or with resting-state correlated oxygen fluctuations. To accomplish this, we will exploit the advantages of polarography over fMRI, including co- localized and simultaneous oxygen and electrical signals, higher spatial and temporal resolution, resistance to movement artifacts, and ease of use in awake behaving animals. Our overall aim is to determine the transfer function mapping electrophysiology signals onto oxygen fluctuations, and whether this transfer function is network-specific, depends on the cortical layer being recorded from, or reflects the ongoing behavioral state of the animal (e.g., task-engaged, sleeping and under anesthesia). The clinical significance of this work is that it will lead to improved use of fMRI information for the diagnosis, prognosis and etiology of brain disorders. The scientific significance, at a high level, is that it will inform our understanding of large-scale brain architecture and cognitive processing.
摘要 人类大脑中的氧气水平波动,没有任何明显的外部驱动因素。 出乎意料的是,这些内在的波动在遥远的区域之间是相关的,形成“静止的”。 国家网络”。这些网络似乎与大脑功能有关。静止状态数据可以 为大脑区域之间的功能联系提供了证据。行为方面 性能可以通过缓慢相关的BOLD波动的持续水平来预测。 最后,包括自闭症和精神分裂症在内的多种神经和精神疾病是 与静息状态网络异常有关。 尽管它们对于理解正常和紊乱的认知具有潜在的重要性, 在人类认知神经科学中,状态网络仍然是一种知之甚少的现象。我们 寻求更好地理解相关氧气波动的起源和意义, 以高空间和时间分辨率对其进行表征, 在休息和执行任务期间与它们相关的电生理信号。 我们将以一种新的方式使用氧极谱法。在静息状态功能磁共振成像扫描的引导下, 我们将在猕猴的大脑中插入多个铂微电极, 氧气浓度的相关波动。我们将同时录制 从这些电极的电生理信号,并问什么部分的 电生理频谱(皮层慢电位、局部场电位、多单位活动) 与任务驱动和/或与静息状态相关的氧波动有关。到 为了实现这一目标,我们将利用极谱法优于功能磁共振成像的优势,包括共- 局部和同时的氧气和电信号,更高的空间和时间 分辨率、对运动伪影的抵抗力以及在清醒行为动物中的易用性。 我们的总体目标是确定将电生理信号映射到 氧波动,以及这种传递函数是否是网络特定的,取决于 记录的皮质层,或反映动物正在进行的行为状态(例如, 工作、睡眠和麻醉)。这项工作的临床意义在于, 将导致改善使用功能磁共振成像信息的诊断,预后和病因的脑 紊乱在高层次上,它的科学意义在于,它将告知我们对 大规模的大脑结构和认知处理。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lawrence H Snyder其他文献

Lawrence H Snyder的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lawrence H Snyder', 18)}}的其他基金

THE DYNAMICS OF LONG RANGE CORRELATIONS IN CORTEX: SINGLE UNITS AND OXYGEN
皮层中长程相关性的动力学:单个单元和氧气
  • 批准号:
    9457753
  • 财政年份:
    2017
  • 资助金额:
    $ 38万
  • 项目类别:
FUNCTIONAL CONNECTIVITY IN THE BRAIN: A NEW APPROACH
大脑的功能连接:一种新方法
  • 批准号:
    8994301
  • 财政年份:
    2014
  • 资助金额:
    $ 38万
  • 项目类别:
A MICRO-ELECTRODE STUDY OF OXYGEN-BASED FUNCTIONAL CONNECTIVITY
基于氧的功能连接的微电极研究
  • 批准号:
    8258738
  • 财政年份:
    2011
  • 资助金额:
    $ 38万
  • 项目类别:
A MICRO-ELECTRODE STUDY OF OXYGEN-BASED FUNCTIONAL CONNECTIVITY
基于氧的功能连接的微电极研究
  • 批准号:
    8093092
  • 财政年份:
    2011
  • 资助金额:
    $ 38万
  • 项目类别:
NEURAL MECHANISMS OF SPATIAL WORKING MEMORY
空间工作记忆的神经机制
  • 批准号:
    7821903
  • 财政年份:
    2009
  • 资助金额:
    $ 38万
  • 项目类别:
VISUAL MOTOR TRANSFORMATION IN CORTEX
皮层中的视觉运动转换
  • 批准号:
    7882800
  • 财政年份:
    2009
  • 资助金额:
    $ 38万
  • 项目类别:
NEURAL MECHANISMS OF SPATIAL WORKING MEMORY
空间工作记忆的神经机制
  • 批准号:
    7938038
  • 财政年份:
    2009
  • 资助金额:
    $ 38万
  • 项目类别:
In Vivo Imaging of Brain Connectivity
大脑连接的体内成像
  • 批准号:
    6957460
  • 财政年份:
    2005
  • 资助金额:
    $ 38万
  • 项目类别:
In Vivo Imaging of Brain Connectivity
大脑连接的体内成像
  • 批准号:
    7099501
  • 财政年份:
    2005
  • 资助金额:
    $ 38万
  • 项目类别:
VISUAL-MOTOR TRANSFORMATIONS IN PARIETAL CORTEX
顶叶皮层的视觉运动转换
  • 批准号:
    6350875
  • 财政年份:
    2000
  • 资助金额:
    $ 38万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 38万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 38万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 38万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 38万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 38万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 38万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了