Dissecting the structural basis for regulation of bacterial DNA polymerase III

剖析细菌 DNA 聚合酶 III 调节的结构基础

基本信息

  • 批准号:
    7869273
  • 负责人:
  • 金额:
    $ 5.22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-06-01 至 2011-05-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Even after decades of study, remarkably little is known about the structural basis for the functional coupling of leading- and lagging-strand synthesis in DNA replication. A fundamental question regards how the polymerase active site couples to other subunits to provide proper proofreading and coordination between leading- and lagging-strand syntheses. My objective is to understand the molecular underpinnings of this complex and dynamic process in the bacterial polymerase III system using a combination of structural and biochemical studies and real-time visualization. The specific aims of this proposal are to: 1) Determine the structural basis for the processivity switch in polymerase recycling. The structure of the complex of tauC bound to the polymerase subunit, a, will be determined. 2) Elucidate the mechanism by which the proofreading subunit modulates pol III activity. Preliminary data shows that there is likely a functional connectivity between the proofreading subunit and polymerase active site. Intrinsic polymerization activity will be measured in the presence and absence of the proofreading subunit, e, to test the hypothesis that the proofreading unit activates polymerization. Polymerase hybrids will be made and characterized to understand active site regulation principles. Finally, a single molecule assay will be developed in order to understand the interplay between the polymerase and proofreading. 3) Determine the structural basis for activation of replication and proofreading by the e subunit. The structure of the a-e complex will be solved in order to understand the mechanism by which the proofreading subunit, e, influences polymerase activity, and the structural basis for the switch from polymerization to exonucleolysis in pol III. PUBLIC HEALTH RELEVANCE: Understanding the structural basis for regulation of DNA replication will have great therapeutic utility. Small molecules that bind and inhibit the polymerase could prove useful as antibiotics. Moreover, defects in DNA replication have been associated with cancer and neurodegenerative disorders, further highlighting the importance of this process to health science.
描述(由申请人提供):即使经过几十年的研究,对DNA复制中前导链和滞后链合成的功能偶联的结构基础知之甚少。一个基本的问题是聚合酶活性位点如何与其他亚基偶联,以在前导链和滞后链合成之间提供适当的校对和协调。我的目标是了解这个复杂的和动态的过程中的细菌聚合酶III系统的结构和生化研究和实时可视化相结合的分子基础。该提案的具体目标是:1)确定聚合酶再循环中持续合成能力转换的结构基础。将确定与聚合酶亚基a结合的tauC复合物的结构。2)阐明校对亚基调节pol III活性的机制。初步数据表明,校正亚基和聚合酶活性位点之间可能存在功能连接。将在存在和不存在校正亚基e的情况下测量固有聚合活性,以检验校正单元激活聚合的假设。聚合酶杂交体将被制造和表征以理解活性位点调节原理。最后,将开发单分子测定法以了解聚合酶和校对之间的相互作用。3)确定e亚基激活复制和校对的结构基础。将解决的a-e复合物的结构,以了解校正亚基,e,影响聚合酶活性的机制,和结构基础的开关从聚合到外切在聚合酶III。公共卫生相关性:了解DNA复制调控的结构基础将具有巨大的治疗效用。结合并抑制聚合酶的小分子可以证明是有用的抗生素。此外,DNA复制缺陷与癌症和神经退行性疾病有关,进一步突出了这一过程对健康科学的重要性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brian Anthony Kelch其他文献

Brian Anthony Kelch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brian Anthony Kelch', 18)}}的其他基金

Mechanism of Disease-causing mutations in PCNA
PCNA 致病突变机制
  • 批准号:
    10699962
  • 财政年份:
    2022
  • 资助金额:
    $ 5.22万
  • 项目类别:
Structural mechanisms of sliding clamp loader ATPases
滑动夹加载器ATP酶的结构机制
  • 批准号:
    10809463
  • 财政年份:
    2019
  • 资助金额:
    $ 5.22万
  • 项目类别:
Structural mechanisms of sliding clamp loader ATPases
滑动夹加载器ATP酶的结构机制
  • 批准号:
    10092193
  • 财政年份:
    2019
  • 资助金额:
    $ 5.22万
  • 项目类别:
Structural mechanisms of sliding clamp loader ATPases
滑动夹加载器ATP酶的结构机制
  • 批准号:
    10553147
  • 财政年份:
    2019
  • 资助金额:
    $ 5.22万
  • 项目类别:
Structural mechanisms of sliding clamp loader ATPases
滑动夹加载器ATP酶的结构机制
  • 批准号:
    10335241
  • 财政年份:
    2019
  • 资助金额:
    $ 5.22万
  • 项目类别:
Structural mechanisms of sliding clamp loader ATPases
滑动夹加载器ATP酶的结构机制
  • 批准号:
    10797120
  • 财政年份:
    2019
  • 资助金额:
    $ 5.22万
  • 项目类别:
Dissecting the structural basis for regulation of bacterial DNA polymerase III
剖析细菌 DNA 聚合酶 III 调节的结构基础
  • 批准号:
    7677143
  • 财政年份:
    2009
  • 资助金额:
    $ 5.22万
  • 项目类别:

相似海外基金

Can antibiotics disrupt biogeochemical nitrogen cycling in the coastal ocean?
抗生素会破坏沿海海洋的生物地球化学氮循环吗?
  • 批准号:
    2902098
  • 财政年份:
    2024
  • 资助金额:
    $ 5.22万
  • 项目类别:
    Studentship
The role of RNA repair in bacterial responses to translation-inhibiting antibiotics
RNA修复在细菌对翻译抑制抗生素的反应中的作用
  • 批准号:
    BB/Y004035/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.22万
  • 项目类别:
    Research Grant
Metallo-Peptides: Arming Cyclic Peptide Antibiotics with New Weapons to Combat Antimicrobial Resistance
金属肽:用新武器武装环肽抗生素以对抗抗菌素耐药性
  • 批准号:
    EP/Z533026/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.22万
  • 项目类别:
    Research Grant
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
  • 批准号:
    EP/Y023528/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.22万
  • 项目类别:
    Research Grant
Towards the sustainable discovery and development of new antibiotics
迈向新抗生素的可持续发现和开发
  • 批准号:
    FT230100468
  • 财政年份:
    2024
  • 资助金额:
    $ 5.22万
  • 项目类别:
    ARC Future Fellowships
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
  • 批准号:
    BB/Y007611/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.22万
  • 项目类别:
    Research Grant
The disulfide bond as a chemical tool in cyclic peptide antibiotics: engineering disulfide polymyxins and murepavadin
二硫键作为环肽抗生素的化学工具:工程化二硫多粘菌素和 murepavadin
  • 批准号:
    MR/Y033809/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.22万
  • 项目类别:
    Research Grant
Role of phenotypic heterogeneity in mycobacterial persistence to antibiotics: Prospects for more effective treatment regimens
表型异质性在分枝杆菌对抗生素持久性中的作用:更有效治疗方案的前景
  • 批准号:
    494853
  • 财政年份:
    2023
  • 资助金额:
    $ 5.22万
  • 项目类别:
    Operating Grants
Imbalance between cell biomass production and envelope biosynthesis underpins the bactericidal activity of cell wall -targeting antibiotics
细胞生物量产生和包膜生物合成之间的不平衡是细胞壁靶向抗生素杀菌活性的基础
  • 批准号:
    2884862
  • 财政年份:
    2023
  • 资助金额:
    $ 5.22万
  • 项目类别:
    Studentship
Narrow spectrum antibiotics for the prevention and treatment of soft-rot plant disease
防治植物软腐病的窄谱抗生素
  • 批准号:
    2904356
  • 财政年份:
    2023
  • 资助金额:
    $ 5.22万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了