Statistical atlases of brain tumor MRI:do imaging phenotypes predict progression?
脑肿瘤 MRI 统计图谱:成像表型能否预测进展?
基本信息
- 批准号:7760605
- 负责人:
- 金额:$ 34.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-06-01 至 2013-01-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAgingAnatomic ModelsAnatomyAreaAtlasesBiomechanicsBiopsyBrainBrain DiseasesBrain NeoplasmsBrain imagingCancer PatientCessation of lifeCharacteristicsClinicalClinical ResearchCommunitiesComplexComputer AssistedConformal RadiotherapyContralateralDataData SetDatabasesDevelopmentDiagnosticDiffuseDiffusionDiffusion Magnetic Resonance ImagingDiseaseDisease ProgressionDoseEdemaExcisionFiberFrequenciesGeneticGliomaGoalsGray unit of radiation doseHealthImageImage AnalysisIndividualInfiltrationInvestigationLeadLinkLiteratureLocationMachine LearningMagnetic ResonanceMagnetic Resonance ImagingMalignant - descriptorMalignant NeoplasmsMalignant neoplasm of brainMeasurementMethodologyMethodsModelingNatureOperative Surgical ProceduresOutcomePathologicPathway interactionsPatientsPatternPerfusionPhasePhenotypePilot ProjectsPlayPositioning AttributePredictive FactorPreventivePrimary Brain NeoplasmsPrincipal InvestigatorProblem SolvingProcessProliferatingProtocols documentationRadiationRadiation therapyRecurrenceRelative (related person)ReproducibilityResearchRoleScanningSchemeSignal TransductionSpectrum AnalysisStructureTimeTissuesWolvesWorkbasebrain tissuecancer cellcancer recurrenceimage registrationimaging modalityimprovedmathematical modelneoplasticneuroimagingoutcome forecastpopulation basedprogramssoft tissuestatisticstherapy developmenttooltreatment planningtumortumor growthtumor progressionwhite matter
项目摘要
DESCRIPTION (provided by applicant): Statistical atlases, and associated image analysis methods, have found widespread use in several neuroimaging fields, presenting a powerful way to integrate diverse imaging information, correlate it with genetic and clinical measurements, understand effects of disease on brain structure and function, and construct diagnostic tools. This proposal will combine statistical image analysis, deformable registration, and biophysical modeling approaches to an integrated framework for constructing and clinically using statistical atlases from brain tumor patients. Emphasis is placed on gliomas, which have very poor prognosis due to cancer infiltration beyond the visible tumor boundary. Accordingly, the ultimate clinical goal of this study is to identify subtle imaging characteristics of brain tissue that is likely to be infiltrated by tumor, as well as of tissue that is likely to present recurrence in relatively shorter time period. This will be achieved by studying the multi-modal imaging phenotypes of healthy and pathologic tissues in conjunction with spatial information, including the spatial pattern of the tumor and the proximity of malignant tissue to white matter fiber pathways, and by correlating these phenotypes with clinical information, including tumor recurrence. The hypothesis is that signal and spatial information together will be able to identify brain tissues that are likely to later present recurrence. The main technical challenges that will be overcome are 1) development of computationally efficient biophysical models of tumor growth, diffusion, and mass effect; 2) development of deformable registration methods that will allow us to co-register tumor-bearing brain images and build a population-based atlas-the main challenges here are to estimate the appropriate tumor parameters as well as the location of peri-tumor anatomy that is typically confounded by edema, infiltration and extreme deformations; and 3) development of machine learning methods for characterizing subtle abnormalities of brain tissue, and for identifying tissue that is likely to present recurrence after resection and treatment. Pilot studies on the feasibility of this approach to larger clinical studies will be performed on a database of brain MR images obtained from glioma patients via a rich and extensive acquisition protocol, including perfusion, diffusion tensor imaging, spectroscopy, and conventional imaging.
描述(由申请人提供):统计地图集和相关的图像分析方法已广泛用于几个神经成像领域,提供了一种强大的方法来整合各种成像信息,将其与遗传和临床测量相关联,了解疾病对大脑结构和功能的影响,并构建诊断工具。该提案将结合联合收割机统计图像分析,可变形注册,和生物物理建模方法的综合框架,用于构建和临床使用脑肿瘤患者的统计图谱。重点放在神经胶质瘤上,由于癌症浸润超过可见的肿瘤边界,其预后非常差。因此,本研究的最终临床目标是识别可能被肿瘤浸润的脑组织以及可能在相对较短的时间内出现复发的组织的细微成像特征。这将通过结合空间信息研究健康和病理组织的多模态成像表型来实现,包括肿瘤的空间模式和恶性组织与白色纤维通路的接近度,并通过将这些表型与临床信息(包括肿瘤复发)相关联来实现。假设是信号和空间信息一起将能够识别可能稍后出现复发的脑组织。将克服的主要技术挑战是:1)发展计算效率高的肿瘤生长、扩散和质量效应的生物物理模型; 2)开发可变形配准方法,使我们能够共同配准肿瘤脑图像并建立基于人群的图谱-这里的主要挑战是估计适当的肿瘤参数以及肿瘤位置-肿瘤解剖学通常被水肿、浸润和极端变形混淆;以及3)开发机器学习方法,用于表征脑组织的细微异常,并用于识别在切除和治疗后可能出现复发的组织。将在通过丰富而广泛的采集协议(包括灌注、扩散张量成像、光谱学和常规成像)从胶质瘤患者获得的脑部MR图像数据库上对这种方法在更大规模临床研究中的可行性进行试点研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christos Davatzikos其他文献
Christos Davatzikos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christos Davatzikos', 18)}}的其他基金
Disentangling the anatomical, functional and clinical heterogeneity of major depression, using machine learning methods
使用机器学习方法解开重度抑郁症的解剖学、功能和临床异质性
- 批准号:
10714834 - 财政年份:2023
- 资助金额:
$ 34.11万 - 项目类别:
Generalizable quantitative imaging and machine learning signatures in glioblastoma, for precision diagnostics and personalized treatment: the ReSPOND consortium
胶质母细胞瘤的通用定量成像和机器学习特征,用于精确诊断和个性化治疗:ReSPOND 联盟
- 批准号:
10625442 - 财政年份:2022
- 资助金额:
$ 34.11万 - 项目类别:
Generalizable quantitative imaging and machine learning signatures in glioblastoma, for precision diagnostics and personalized treatment: the ReSPOND consortium
胶质母细胞瘤的通用定量成像和机器学习特征,用于精确诊断和个性化治疗:ReSPOND 联盟
- 批准号:
10421222 - 财政年份:2022
- 资助金额:
$ 34.11万 - 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
- 批准号:
10696100 - 财政年份:2020
- 资助金额:
$ 34.11万 - 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
- 批准号:
10263220 - 财政年份:2020
- 资助金额:
$ 34.11万 - 项目类别:
Benchmarking and Comparing AD-Related AI Methods Across Sites on a Standardized Dataset
在标准化数据集上跨站点对 AD 相关 AI 方法进行基准测试和比较
- 批准号:
10825403 - 财政年份:2020
- 资助金额:
$ 34.11万 - 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
- 批准号:
10475286 - 财政年份:2020
- 资助金额:
$ 34.11万 - 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
- 批准号:
10028746 - 财政年份:2020
- 资助金额:
$ 34.11万 - 项目类别:
Machine Learning and Large-scale Imaging analytics for dimensional representations of brain trajectories in aging and preclinical Alzheimer's Disease: The brain aging chart and the iSTAGING consortium
机器学习和大规模成像分析,用于衰老和临床前阿尔茨海默氏病大脑轨迹的维度表示:大脑衰老图表和 iSTAGING 联盟
- 批准号:
10839623 - 财政年份:2017
- 资助金额:
$ 34.11万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 34.11万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 34.11万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 34.11万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 34.11万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 34.11万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 34.11万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 34.11万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 34.11万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 34.11万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 34.11万 - 项目类别:
Research Grant














{{item.name}}会员




