Bioinformatics Infrastructure for Large Scale Studies of Aphasia Recovery
用于失语症恢复大规模研究的生物信息学基础设施
基本信息
- 批准号:7904169
- 负责人:
- 金额:$ 6.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-09-20 至 2010-09-30
- 项目状态:已结题
- 来源:
- 关键词:AdultAgeAlgorithmsAphasiaAstronomyBehavioralBioinformaticsBiologicalBrainBrain imagingCase StudyCognitiveCommunitiesComplexComputational BiologyComputer Storage DevicesComputersDataData SetDatabasesDetectionDevelopmentDiagnosisDiffusionDiseaseDistributed SystemsDocumentationFamilyFunctional Magnetic Resonance ImagingFundingGoalsHospitalsImageIndividualInterviewInvestigationKnowledgeLanguageLinguisticsLongitudinal StudiesMagnetic Resonance ImagingManufacturer NameMeasuresMedicalMetabolicMetadataMethodsModalityModelingNeural Network SimulationOntologyPaperParticipantPatientsPerformancePhasePhysicsPhysiologicalPhysiologyPreparationPrivacyProceduresProcessProspective StudiesProtocols documentationRecoveryResearchResearch DesignResearch InfrastructureResearch PersonnelResourcesSecuritySeriesSourceSpecific qualifier valueStructureSystemTechniquesTechnologyTest ResultTestingTherapeutic InterventionTimeTranslatingWorkabstractingbasecluster computingcomputer infrastructurecomputerized data processingdata managementdata modelingdata sharingdesigndistributed dataimprovedlongitudinal analysismedical information systemnoveloutcome forecastperformance testsprogramsprospectiverelational databasescale upsoftware developmenttask analysistheoriestoolusabilityvirtual
项目摘要
DESCRIPTION (provided by applicant): Large prospective studies of aphasia recovery that incorporate anatomical, physiological, and behavioral data are virtually non-existent. This has a significant impact on virtually all research into the diagnosis, prognosis, and treatment of aphasia, since we do not know the natural course of the disease, and thus cannot adequately inform patients and families or assess the effects of therapeutic interventions. We believe that the complexities of data management, particularly regarding anatomical and physiological data, represent a major stumbling block to the design and execution of such studies. With such diverse sources of information as demographic and medical data, cognitive and linguistic test results, electrophysiological recordings, and many types of brain images, it is hard enough to perform single case studies that attempt to relate these data to each other, let alone studies that include statistically meaningful numbers of participants. Even when the problem is restricted to a single data type, such as functional MRI data, we do not have the ability to scale up the methods used in individual subjects to larger groups. Both the large volume of data and the complexity of data processing cause difficulties. We thus propose to build computational infrastructure (R21 phase) to facilitate the prospective investigation of aphasia recovery (R33 phase). The infrastructure is based on the use of (a) database technology to represent diverse data types within a single representational framework; and (b) "grid" computing to distribute data and data processing over many storage devices and computers, using software developed in federally (NSF) funded basic computational research that allows investigators to express complex data processing algorithms in a convenient manner. The longitudinal aphasia study will use structural and functional MRI and diffusion tensor imaging, along with language and cognitive measures, to characterize the natural course of physiological and behavioral recovery from aphasia. The physiology of recovery will be quantified in neural network models of individual patient imaging data and their mathematical "fit" to normative templates derived from imaging data on healthy age-matched adults. The changes in these models over time will be related to the behavioral changes to construct a theory of recovery. The computational infrastructure will provide the means to encode the diverse types of data needed for aphasia recovery research in such a way that complex queries involving multiple data types (e.g., brain activation and language performance) can be retrieved easily, and that queries requiring significant computer processing (e.g., peak detection in imaging time series) can be answered quickly due to grid computing. Finally, this infrastructure and data will be shared, and a user of the system from virtually anywhere could pose such questions using the relational database query interface.
描述(由申请人提供):结合解剖学、生理学和行为学数据的失语症恢复的大型前瞻性研究几乎不存在。这对几乎所有关于失语症的诊断、预后和治疗的研究都有重大影响,因为我们不知道疾病的自然病程,因此无法充分告知患者和家属或评估治疗干预的效果。我们认为,数据管理的复杂性,特别是关于解剖和生理数据,是设计和执行此类研究的主要绊脚石。由于信息来源多种多样,如人口统计学和医学数据、认知和语言测试结果、电生理记录以及多种类型的大脑图像,很难进行试图将这些数据相互关联的单一案例研究,更不用说包括统计学上有意义的参与者数量的研究了。即使问题仅限于单一数据类型,如功能性MRI数据,我们也没有能力将个体受试者使用的方法扩展到更大的群体。数据量大和数据处理的复杂性都造成了困难。因此,我们建议建立计算基础设施(R21阶段),以促进失语症恢复(R33阶段)的前瞻性研究。基础设施的基础是使用(a)数据库技术,在一个单一的代表性框架内代表不同的数据类型;(B)“网格”计算,利用在联邦资助的基础计算研究中开发的软件,将数据和数据处理分布在许多存储设备和计算机上,使研究人员能够以方便的方式表达复杂的数据处理算法。纵向失语症研究将使用结构和功能MRI和扩散张量成像,沿着语言和认知测量,以表征失语症生理和行为恢复的自然过程。将在个体患者成像数据的神经网络模型中量化恢复的生理学,并将其数学“拟合”到从健康年龄匹配成人的成像数据中获得的规范模板。这些模型随时间的变化将与行为变化相关,以构建恢复理论。计算基础设施将提供对失语症恢复研究所需的各种类型的数据进行编码的手段,这种方式使得涉及多种数据类型的复杂查询(例如,大脑激活和语言表现)可以被容易地检索,并且需要大量计算机处理的查询(例如,成像时间序列中的峰值检测)可以由于网格计算而被快速回答。最后,这一基础设施和数据将被共享,几乎任何地方的系统用户都可以使用关系数据库查询接口提出这样的问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven L Small其他文献
Steven L Small的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven L Small', 18)}}的其他基金
Structural & Network-Function Correlates of Fragmented Early-Life Across Species
结构性
- 批准号:
9355809 - 财政年份:2013
- 资助金额:
$ 6.26万 - 项目类别:
Society for the Neurobiology of Language Annual Meeting
语言神经生物学学会年会
- 批准号:
10753186 - 财政年份:2011
- 资助金额:
$ 6.26万 - 项目类别:
Society for the Neurobiology of Language Annual Meeting
语言神经生物学学会年会
- 批准号:
9126245 - 财政年份:2011
- 资助金额:
$ 6.26万 - 项目类别:
Society for the Neurobiology of Language Annual Meeting
语言神经生物学学会年会
- 批准号:
9230829 - 财政年份:2011
- 资助金额:
$ 6.26万 - 项目类别:
Preparing Trainees in Neurology and Neurosurgery for Academic Research Careers
为神经病学和神经外科学员的学术研究职业做好准备
- 批准号:
8033582 - 财政年份:2009
- 资助金额:
$ 6.26万 - 项目类别:
Bioinformatics Infrastructure for Large Scale Studies of Aphasia Recovery
用于失语症恢复大规模研究的生物信息学基础设施
- 批准号:
8221187 - 财政年份:2006
- 资助金额:
$ 6.26万 - 项目类别:
Bioinformatics Infrastructure for Large Scale Studies of Aphasia Recovery
用于失语症恢复大规模研究的生物信息学基础设施
- 批准号:
7669780 - 财政年份:2006
- 资助金额:
$ 6.26万 - 项目类别:
Bioinformatics Infrastructure for Large Scale Studies of Aphasia Recovery
用于失语症恢复大规模研究的生物信息学基础设施
- 批准号:
7289307 - 财政年份:2006
- 资助金额:
$ 6.26万 - 项目类别:
Bioinformatics Infrastructure for Large Scale Studies of Aphasia Recovery
用于失语症恢复大规模研究的生物信息学基础设施
- 批准号:
7672344 - 财政年份:2006
- 资助金额:
$ 6.26万 - 项目类别:
相似国自然基金
靶向递送一氧化碳调控AGE-RAGE级联反应促进糖尿病创面愈合研究
- 批准号:JCZRQN202500010
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
对香豆酸抑制AGE-RAGE-Ang-1通路改善海马血管生成障碍发挥抗阿尔兹海默病作用
- 批准号:2025JJ70209
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AGE-RAGE通路调控慢性胰腺炎纤维化进程的作用及分子机制
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
甜茶抑制AGE-RAGE通路增强突触可塑性改善小鼠抑郁样行为
- 批准号:2023JJ50274
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
蒙药额尔敦-乌日勒基础方调控AGE-RAGE信号通路改善术后认知功能障碍研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
补肾健脾祛瘀方调控AGE/RAGE信号通路在再生障碍性贫血骨髓间充质干细胞功能受损的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
LncRNA GAS5在2型糖尿病动脉粥样硬化中对AGE-RAGE 信号通路上相关基因的调控作用及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
- 批准号:81973577
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
AGE/RAGE通路microRNA编码基因多态性与2型糖尿病并发冠心病的关联研究
- 批准号:81602908
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
高血糖激活滑膜AGE-RAGE-PKC轴致骨关节炎易感的机制研究
- 批准号:81501928
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341426 - 财政年份:2024
- 资助金额:
$ 6.26万 - 项目类别:
Continuing Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341424 - 财政年份:2024
- 资助金额:
$ 6.26万 - 项目类别:
Continuing Grant
PROTEMO: Emotional Dynamics Of Protective Policies In An Age Of Insecurity
PROTEMO:不安全时代保护政策的情绪动态
- 批准号:
10108433 - 财政年份:2024
- 资助金额:
$ 6.26万 - 项目类别:
EU-Funded
The role of dietary and blood proteins in the prevention and development of major age-related diseases
膳食和血液蛋白在预防和发展主要与年龄相关的疾病中的作用
- 批准号:
MR/X032809/1 - 财政年份:2024
- 资助金额:
$ 6.26万 - 项目类别:
Fellowship
Atomic Anxiety in the New Nuclear Age: How Can Arms Control and Disarmament Reduce the Risk of Nuclear War?
新核时代的原子焦虑:军控与裁军如何降低核战争风险?
- 批准号:
MR/X034690/1 - 财政年份:2024
- 资助金额:
$ 6.26万 - 项目类别:
Fellowship
Walkability and health-related quality of life in Age-Friendly Cities (AFCs) across Japan and the Asia-Pacific
日本和亚太地区老年友好城市 (AFC) 的步行适宜性和与健康相关的生活质量
- 批准号:
24K13490 - 财政年份:2024
- 资助金额:
$ 6.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Discovering the (R)Evolution of EurAsian Steppe Metallurgy: Social and environmental impact of the Bronze Age steppes metal-driven economy
发现欧亚草原冶金的(R)演变:青铜时代草原金属驱动型经济的社会和环境影响
- 批准号:
EP/Z00022X/1 - 财政年份:2024
- 资助金额:
$ 6.26万 - 项目类别:
Research Grant
ICF: Neutrophils and cellular senescence: A vicious circle promoting age-related disease.
ICF:中性粒细胞和细胞衰老:促进与年龄相关疾病的恶性循环。
- 批准号:
MR/Y003365/1 - 财政年份:2024
- 资助金额:
$ 6.26万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Effects of age of acquisition in emerging sign languages
博士论文研究:新兴手语习得年龄的影响
- 批准号:
2335955 - 财政年份:2024
- 资助金额:
$ 6.26万 - 项目类别:
Standard Grant
Shaping Competition in the Digital Age (SCiDA) - Principles, tools and institutions of digital regulation in the UK, Germany and the EU
塑造数字时代的竞争 (SCiDA) - 英国、德国和欧盟的数字监管原则、工具和机构
- 批准号:
AH/Y007549/1 - 财政年份:2024
- 资助金额:
$ 6.26万 - 项目类别:
Research Grant














{{item.name}}会员




