Surface Engineering in Contact Activation of Coagulation

接触激活凝结的表面工程

基本信息

项目摘要

DESCRIPTION (provided by applicant): Thrombosis remains a significant barrier to the development and implementation of blood-contacting medical devices. Contact activation of the blood plasma coagulation cascade has been shown to be a significant contributor to poor hemocompatibility of materials that leads to thrombosis. It is found that that hydrophilic materials are very efficient activators of plasma coagulation whereas hydrophobic materials are relatively inefficient activators. Classical biochemistry attributes this observation to the preferential adsorption/ assembly of activator-complex proteins directly onto hydrophilic surfaces. However, this explantion is inconsistent with the experimental finding that proteins do not adsorb to hydrophilic surfaces but do adsorb to hydrophobic surfaces. An objective of this proposal is to remedy this apparent inconsistency by testing the hypothesis that "Hydrophobic procoagulant surfaces are inhibitory to activation of the intrinsic pathway of the plasma coagulation cascade. Hydrophilic procoagulant surfaces are the most efficient activators because protein adsorption to these surfaces does not compete with solution-phase assembly of AC proteins, whereas contact activation by relatively hydrophobic procoagulants is moderated by adsorption of AC proteins directly onto these surfaces, leading to decreased activation." This proposed biochemistry is different than the conventional mechanism because it views hydrophobic surfaces as inhibitory to plasma activation rather than activation being specific to hydrophilic (anionic) surfaces, and therefore resolves the apparent inconsistentencies with observed protein adsorption behavior. This hypothesis is tested through three specific aims that utilize surface-science techniques and experimental/theoretical analysis of enzyme activation to understand relationships among protein adsorption, activation of the activation complex proteins, and subsequent production of FXIa. This information is critical to the prospective bioengineering of materials with improved hemocompatibility for a wide variety of cardiovascular devices. Lay description: Formation of blood clots on materials used in medical devices is a problem. The reasons for clot formation are unclear, and seemingly contradict what is already known about how blood responds to materials. This proposal seeks to understand the reasons for clot formation on materials by measuring the interaction of blood components with materials and how those components change in response.
描述(由申请人提供):血栓形成仍然是开发和实施血液接触医疗器械的重要障碍。血浆凝固级联的接触激活已被证明是导致血栓形成的材料血液相容性差的重要因素。发现亲水性材料是非常有效的血浆凝固活化剂,而疏水性材料是相对低效的活化剂。经典生物化学将这一观察结果归因于活化剂复合物蛋白直接吸附/组装到亲水表面上。然而,这一假设与蛋白质不吸附于亲水表面但吸附于疏水表面的实验发现不一致。本提案的目的是通过检验“疏水促凝血表面抑制血浆凝血级联的内在途径激活”的假设来纠正这种明显的不一致。亲水性促凝剂表面是最有效的活化剂,因为蛋白质吸附到这些表面不与AC蛋白质的溶液相组装竞争,而通过相对疏水性促凝剂的接触活化通过AC蛋白质直接吸附到这些表面上而缓和,导致活化降低。“这种提出的生物化学与传统机制不同,因为它将疏水表面视为对血浆活化的抑制,而不是对亲水(阴离子)表面的特异性活化,因此解决了与观察到的蛋白质吸附行为明显不一致的问题。这一假设是通过三个具体的目标,利用表面科学技术和实验/理论分析酶的活化,以了解蛋白质吸附,活化复合物蛋白质的活化,并随后生产FXIa之间的关系进行测试。该信息对于具有改善的血液相容性的材料用于各种心血管器械的前瞻性生物工程至关重要。 简单描述:在医疗器械所用材料上形成血凝块是一个问题。凝块形成的原因尚不清楚,似乎与已知的血液对材料的反应相矛盾。该提案旨在通过测量血液成分与材料的相互作用以及这些成分如何响应变化来了解材料上凝块形成的原因。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

CHRISTOPHER A SIEDLECKI其他文献

CHRISTOPHER A SIEDLECKI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('CHRISTOPHER A SIEDLECKI', 18)}}的其他基金

Combinatorial Approaches to Improved Blood-contacting Polymer Biomaterials
改进血液接触聚合物生物材料的组合方法
  • 批准号:
    10033067
  • 财政年份:
    2020
  • 资助金额:
    $ 34.59万
  • 项目类别:
Combinatorial Approaches to Improved Blood-contacting Polymer Biomaterials
改进血液接触聚合物生物材料的组合方法
  • 批准号:
    10680549
  • 财政年份:
    2020
  • 资助金额:
    $ 34.59万
  • 项目类别:
Combinatorial Approaches to Improved Blood-contacting Polymer Biomaterials
改进血液接触聚合物生物材料的组合方法
  • 批准号:
    10237331
  • 财政年份:
    2020
  • 资助金额:
    $ 34.59万
  • 项目类别:
Combinatorial Approaches to Improved Blood-contacting Polymer Biomaterials
改进血液接触聚合物生物材料的组合方法
  • 批准号:
    10461019
  • 财政年份:
    2020
  • 资助金额:
    $ 34.59万
  • 项目类别:
NANOTEXTURED POLYURETHANES FOR REDUCED PLATELET ADHESION
用于降低血小板粘附的纳米纹理聚氨酯
  • 批准号:
    6869379
  • 财政年份:
    2004
  • 资助金额:
    $ 34.59万
  • 项目类别:
NANOTEXTURED POLYURETHANES FOR REDUCED PLATELET ADHESION
用于降低血小板粘附的纳米纹理聚氨酯
  • 批准号:
    6988498
  • 财政年份:
    2004
  • 资助金额:
    $ 34.59万
  • 项目类别:
Surface Engineering in Contact Activation of Coagulation
接触激活凝结的表面工程
  • 批准号:
    8316160
  • 财政年份:
    2002
  • 资助金额:
    $ 34.59万
  • 项目类别:
Surface Engineering in Contact Activation of Coagulation
接触激活凝结的表面工程
  • 批准号:
    7586732
  • 财政年份:
    2002
  • 资助金额:
    $ 34.59万
  • 项目类别:
SURFACE ENGINEERING IN CONTACT ACTIVATION OF COAGULATION
接触激活凝固的表面工程
  • 批准号:
    6463492
  • 财政年份:
    2002
  • 资助金额:
    $ 34.59万
  • 项目类别:
SURFACE ENGINEERING IN CONTACT ACTIVATION OF COAGULATION
接触激活凝固的表面工程
  • 批准号:
    6623151
  • 财政年份:
    2002
  • 资助金额:
    $ 34.59万
  • 项目类别:

相似海外基金

Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.59万
  • 项目类别:
    Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.59万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 34.59万
  • 项目类别:
    Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.59万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.59万
  • 项目类别:
    Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.59万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.59万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 34.59万
  • 项目类别:
    Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 34.59万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
  • 批准号:
    2244994
  • 财政年份:
    2023
  • 资助金额:
    $ 34.59万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了