SURFACE ENGINEERING IN CONTACT ACTIVATION OF COAGULATION
接触激活凝固的表面工程
基本信息
- 批准号:6623151
- 负责人:
- 金额:$ 30.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-04-01 至 2006-03-31
- 项目状态:已结题
- 来源:
- 关键词:activation product atomic force microscopy bioengineering /biomedical engineering blood coagulation blood proteins cell membrane coagulation factor XII hemostatics hydropathy membrane proteins molecular assembly /self assembly molecular film nanotechnology protein binding protein protein interaction solvents thermodynamics water solution zymogens
项目摘要
Activation of the blood plasma (a cellular) coagulation cascade by contact with materials is thought to be initiated by molecular assembly of the proteins of the activation complex directly onto procoagulant surfaces, leading to conversion of the zymogen Factor XII to the protease form FXIIa that desorbs into the solution phase. This mechanism is at odds with the experimental observation that the efficiency of contact activation is critically dependant on procoagulant surface energy in reverse order of protein adsorbent capacity, with very efficient activation for high-surface energy (water wettable) surfaces that are inefficient protein adsorbents and inefficient activation for intermediate- and low-energy (poorly water wettable) surfaces that are efficient adsorbents. Furthermore, it is difficult to rationalize from a surface energetic perspective how procoagulant surfaces can simultaneously serve as efficient FXII adsorbents (leading to molecular assembly on a surface) and inefficient FXIIa adsorbents (leading to release from a surface), especially in view of the relatively minor molecular difference between zymogen and protease forms. These and other discrepancies between proposed mechanism and experiment can be rationalized by an alternative hypothesis proposing that: Proteins of the contact activation complex assemble near procoagulant surfaces within a vicinal water region having special solvent properties that result from the hydration of high-energy surfaces. Self-amplifying zymogen-enzyme conversion occurs within this vicinal water zone, but not directly on surfaces, and propagates into the bulk plasma phase therefrom. Solvent properties of water near intermediate-to-low surface energy materials does not induce activation of FXII and adsorption directly onto these relatively hydrophobic surfaces does not potentiate the intrinsic pathway of the plasma coagulation cascade. The overarching objective of the work outlined within this application is to test the veracity of this proposition and underlying lemma with an eye to elucidating surface-engineering routes to materials with improved hemocompatibility for blood- contact applications. The proposed work is a balanced mix of biophysical and hematological approaches to a long-standing bioengineering problem that will relate surface thermodynamics of protein adsorption, surface-protein binding directly measured by AFM, and the procoagulant efficiency of surfaces variably bearing immobilized factors.
与材料接触的血浆(细胞)凝血级联的激活被认为是由激活复合物蛋白的分子组装直接在促凝剂表面启动的,导致酶原因子XII转化为蛋白酶形式FXIIa,并解吸到溶液中。这一机制与实验观察结果不一致,即接触激活的效率严重依赖于促凝剂的表面能,与蛋白质吸附能力相反,对于高表面能(可湿性差)表面是低效的蛋白质吸附剂,而对于中低能量(可湿性差)表面是低效的吸附剂。此外,很难从表面能的角度来解释促凝剂表面如何同时作为高效的FXII吸附剂(导致分子在表面上的组装)和低效的FXIIa吸附剂(导致从表面释放),特别是考虑到酶原和蛋白酶形式之间相对较小的分子差异。所提出的机制和实验之间的这些和其他差异可以通过另一种假设来合理化:接触活化复合物的蛋白质聚集在邻近水区的促凝剂表面附近,具有由高能表面水合作用产生的特殊溶剂性质。自扩增酶-酶转化发生在邻近的水区,但不直接发生在表面,并从水区传播到体浆相。中低表面能材料附近的水的溶剂性质不会诱导FXII的活化,直接吸附在这些相对疏水的表面上不会增强等离子体凝聚级联的固有途径。本应用程序中概述的工作的总体目标是测试该命题和潜在引理的准确性,并着眼于阐明具有改善血液相容性的材料的表面工程路线,以用于血液接触应用。提出的工作是生物物理学和血液学方法的平衡组合,以解决一个长期存在的生物工程问题,将涉及蛋白质吸附的表面热力学,由AFM直接测量的表面-蛋白质结合,以及不同承载固定因子的表面的促凝效率。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHRISTOPHER A SIEDLECKI其他文献
CHRISTOPHER A SIEDLECKI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHRISTOPHER A SIEDLECKI', 18)}}的其他基金
Combinatorial Approaches to Improved Blood-contacting Polymer Biomaterials
改进血液接触聚合物生物材料的组合方法
- 批准号:
10033067 - 财政年份:2020
- 资助金额:
$ 30.78万 - 项目类别:
Combinatorial Approaches to Improved Blood-contacting Polymer Biomaterials
改进血液接触聚合物生物材料的组合方法
- 批准号:
10680549 - 财政年份:2020
- 资助金额:
$ 30.78万 - 项目类别:
Combinatorial Approaches to Improved Blood-contacting Polymer Biomaterials
改进血液接触聚合物生物材料的组合方法
- 批准号:
10237331 - 财政年份:2020
- 资助金额:
$ 30.78万 - 项目类别:
Combinatorial Approaches to Improved Blood-contacting Polymer Biomaterials
改进血液接触聚合物生物材料的组合方法
- 批准号:
10461019 - 财政年份:2020
- 资助金额:
$ 30.78万 - 项目类别:
NANOTEXTURED POLYURETHANES FOR REDUCED PLATELET ADHESION
用于降低血小板粘附的纳米纹理聚氨酯
- 批准号:
6869379 - 财政年份:2004
- 资助金额:
$ 30.78万 - 项目类别:
NANOTEXTURED POLYURETHANES FOR REDUCED PLATELET ADHESION
用于降低血小板粘附的纳米纹理聚氨酯
- 批准号:
6988498 - 财政年份:2004
- 资助金额:
$ 30.78万 - 项目类别:
Surface Engineering in Contact Activation of Coagulation
接触激活凝结的表面工程
- 批准号:
8316160 - 财政年份:2002
- 资助金额:
$ 30.78万 - 项目类别:
Surface Engineering in Contact Activation of Coagulation
接触激活凝结的表面工程
- 批准号:
7790581 - 财政年份:2002
- 资助金额:
$ 30.78万 - 项目类别:
Surface Engineering in Contact Activation of Coagulation
接触激活凝结的表面工程
- 批准号:
7586732 - 财政年份:2002
- 资助金额:
$ 30.78万 - 项目类别:
SURFACE ENGINEERING IN CONTACT ACTIVATION OF COAGULATION
接触激活凝固的表面工程
- 批准号:
6463492 - 财政年份:2002
- 资助金额:
$ 30.78万 - 项目类别:
相似海外基金
Pushing the envelope: atomic force microscopy imaging of the bacterial outer membrane during growth and division
挑战极限:生长和分裂过程中细菌外膜的原子力显微镜成像
- 批准号:
BB/X007669/1 - 财政年份:2024
- 资助金额:
$ 30.78万 - 项目类别:
Research Grant
Nanoscopic elucidation of dynamic behavior of RNA viral nucleocapsid proteins using high-speed atomic force microscopy (HS-AFM)
使用高速原子力显微镜 (HS-AFM) 纳米级阐明 RNA 病毒核衣壳蛋白的动态行为
- 批准号:
24K18449 - 财政年份:2024
- 资助金额:
$ 30.78万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unravelling dengue virus structural dynamics and conformational changes using high-speed atomic force microscopy
使用高速原子力显微镜揭示登革热病毒结构动力学和构象变化
- 批准号:
24K18450 - 财政年份:2024
- 资助金额:
$ 30.78万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Atomic scale reactivity of small islands of a bimetallic alloy on ceria to small molecules investigated by ultrahigh resolution atomic force microscopy
通过超高分辨率原子力显微镜研究二氧化铈上双金属合金小岛对小分子的原子尺度反应性
- 批准号:
24K01350 - 财政年份:2024
- 资助金额:
$ 30.78万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
State-of-the-art atomic force microscopy facilities for South Australia
南澳大利亚最先进的原子力显微镜设施
- 批准号:
LE240100129 - 财政年份:2024
- 资助金额:
$ 30.78万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Pushing the envelope: atomic force microscopy imaging of the bacterial outer membrane during growth and division
挑战极限:生长和分裂过程中细菌外膜的原子力显微镜成像
- 批准号:
BB/X00760X/1 - 财政年份:2024
- 资助金额:
$ 30.78万 - 项目类别:
Research Grant
A New Nano Tip Fabrication Technique for Atomic Force Microscopy
原子力显微镜的新型纳米尖端制造技术
- 批准号:
DP230100637 - 财政年份:2023
- 资助金额:
$ 30.78万 - 项目类别:
Discovery Projects
Magnetic imaging by the locally induced anomalous Nernst effect using atomic force microscopy
使用原子力显微镜通过局部诱发的异常能斯特效应进行磁成像
- 批准号:
23K04579 - 财政年份:2023
- 资助金额:
$ 30.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Characterization of super adhesive aerosols on the basis of individual particle analysis using atomic force microscopy
基于原子力显微镜单个颗粒分析的超粘性气溶胶表征
- 批准号:
22KJ1464 - 财政年份:2023
- 资助金额:
$ 30.78万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Using atomic force microscopy to explore the processes and re-organisations that occur during bacterial growth and division and how these are influenc
使用原子力显微镜探索细菌生长和分裂过程中发生的过程和重组以及它们如何影响细菌
- 批准号:
2887441 - 财政年份:2023
- 资助金额:
$ 30.78万 - 项目类别:
Studentship