SURFACE ENGINEERING IN CONTACT ACTIVATION OF COAGULATION

接触激活凝固的表面工程

基本信息

项目摘要

Activation of the blood plasma (a cellular) coagulation cascade by contact with materials is thought to be initiated by molecular assembly of the proteins of the activation complex directly onto procoagulant surfaces, leading to conversion of the zymogen Factor XII to the protease form FXIIa that desorbs into the solution phase. This mechanism is at odds with the experimental observation that the efficiency of contact activation is critically dependant on procoagulant surface energy in reverse order of protein adsorbent capacity, with very efficient activation for high-surface energy (water wettable) surfaces that are inefficient protein adsorbents and inefficient activation for intermediate- and low-energy (poorly water wettable) surfaces that are efficient adsorbents. Furthermore, it is difficult to rationalize from a surface energetic perspective how procoagulant surfaces can simultaneously serve as efficient FXII adsorbents (leading to molecular assembly on a surface) and inefficient FXIIa adsorbents (leading to release from a surface), especially in view of the relatively minor molecular difference between zymogen and protease forms. These and other discrepancies between proposed mechanism and experiment can be rationalized by an alternative hypothesis proposing that: Proteins of the contact activation complex assemble near procoagulant surfaces within a vicinal water region having special solvent properties that result from the hydration of high-energy surfaces. Self-amplifying zymogen-enzyme conversion occurs within this vicinal water zone, but not directly on surfaces, and propagates into the bulk plasma phase therefrom. Solvent properties of water near intermediate-to-low surface energy materials does not induce activation of FXII and adsorption directly onto these relatively hydrophobic surfaces does not potentiate the intrinsic pathway of the plasma coagulation cascade. The overarching objective of the work outlined within this application is to test the veracity of this proposition and underlying lemma with an eye to elucidating surface-engineering routes to materials with improved hemocompatibility for blood- contact applications. The proposed work is a balanced mix of biophysical and hematological approaches to a long-standing bioengineering problem that will relate surface thermodynamics of protein adsorption, surface-protein binding directly measured by AFM, and the procoagulant efficiency of surfaces variably bearing immobilized factors.
通过与材料接触激活血浆(细胞)凝血级联被认为是通过将激活复合物的蛋白质直接分子组装到促凝血剂表面上而引发的,导致酶原因子XII转化为解吸到溶液相中的蛋白酶形式FXIIa。 这种机制与实验观察结果不一致,即接触活化的效率严重依赖于促凝血表面能,其顺序与蛋白质吸附剂容量相反,对于低效蛋白质吸附剂的高表面能(水可润湿)表面,活化非常有效,而对于高效蛋白质吸附剂的中能和低能(水可润湿性差)表面,活化效率低下。 此外,从表面能量的角度难以合理化促凝血表面如何能够同时充当有效的FXII吸附剂(导致表面上的分子组装)和无效的FXIIa吸附剂(导致从表面释放),尤其是鉴于酶原和蛋白酶形式之间的相对较小的分子差异。 提出的机制和实验之间的这些和其他差异可以合理化的替代假设,提出:蛋白质的接触活化复合物组装附近的促凝剂表面内的一个邻近的水区域具有特殊的溶剂性质,导致从高能量表面的水合作用。 自放大的酶原-酶转化发生在该邻近的水区域内,但不直接在表面上,并且从表面传播到本体血浆相中。在中低表面能材料附近的水的溶剂性质不会诱导FXII的活化,并且直接吸附到这些相对疏水的表面上不会增强血浆凝血级联的内在途径。本申请中概述的工作的总体目标是测试该命题和基本引理的准确性,着眼于阐明血液接触应用中具有改善的血液相容性的材料的表面工程路线。 拟议的工作是一个长期存在的生物工程问题,将涉及表面热力学的蛋白质吸附,表面蛋白质结合直接测量的AFM,和促凝剂的效率的表面吸附轴承固定化因子的生物物理和血液学方法的平衡组合。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

CHRISTOPHER A SIEDLECKI其他文献

CHRISTOPHER A SIEDLECKI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('CHRISTOPHER A SIEDLECKI', 18)}}的其他基金

Combinatorial Approaches to Improved Blood-contacting Polymer Biomaterials
改进血液接触聚合物生物材料的组合方法
  • 批准号:
    10033067
  • 财政年份:
    2020
  • 资助金额:
    $ 30.78万
  • 项目类别:
Combinatorial Approaches to Improved Blood-contacting Polymer Biomaterials
改进血液接触聚合物生物材料的组合方法
  • 批准号:
    10680549
  • 财政年份:
    2020
  • 资助金额:
    $ 30.78万
  • 项目类别:
Combinatorial Approaches to Improved Blood-contacting Polymer Biomaterials
改进血液接触聚合物生物材料的组合方法
  • 批准号:
    10237331
  • 财政年份:
    2020
  • 资助金额:
    $ 30.78万
  • 项目类别:
Combinatorial Approaches to Improved Blood-contacting Polymer Biomaterials
改进血液接触聚合物生物材料的组合方法
  • 批准号:
    10461019
  • 财政年份:
    2020
  • 资助金额:
    $ 30.78万
  • 项目类别:
NANOTEXTURED POLYURETHANES FOR REDUCED PLATELET ADHESION
用于降低血小板粘附的纳米纹理聚氨酯
  • 批准号:
    6869379
  • 财政年份:
    2004
  • 资助金额:
    $ 30.78万
  • 项目类别:
NANOTEXTURED POLYURETHANES FOR REDUCED PLATELET ADHESION
用于降低血小板粘附的纳米纹理聚氨酯
  • 批准号:
    6988498
  • 财政年份:
    2004
  • 资助金额:
    $ 30.78万
  • 项目类别:
Surface Engineering in Contact Activation of Coagulation
接触激活凝结的表面工程
  • 批准号:
    8316160
  • 财政年份:
    2002
  • 资助金额:
    $ 30.78万
  • 项目类别:
Surface Engineering in Contact Activation of Coagulation
接触激活凝结的表面工程
  • 批准号:
    7790581
  • 财政年份:
    2002
  • 资助金额:
    $ 30.78万
  • 项目类别:
Surface Engineering in Contact Activation of Coagulation
接触激活凝结的表面工程
  • 批准号:
    7586732
  • 财政年份:
    2002
  • 资助金额:
    $ 30.78万
  • 项目类别:
SURFACE ENGINEERING IN CONTACT ACTIVATION OF COAGULATION
接触激活凝固的表面工程
  • 批准号:
    6623151
  • 财政年份:
    2002
  • 资助金额:
    $ 30.78万
  • 项目类别:

相似海外基金

Pushing the envelope: atomic force microscopy imaging of the bacterial outer membrane during growth and division
挑战极限:生长和分裂过程中细菌外膜的原子力显微镜成像
  • 批准号:
    BB/X007669/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.78万
  • 项目类别:
    Research Grant
Nanoscopic elucidation of dynamic behavior of RNA viral nucleocapsid proteins using high-speed atomic force microscopy (HS-AFM)
使用高速原子力显微镜 (HS-AFM) 纳米级阐明 RNA 病毒核衣壳蛋白的动态行为
  • 批准号:
    24K18449
  • 财政年份:
    2024
  • 资助金额:
    $ 30.78万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unravelling dengue virus structural dynamics and conformational changes using high-speed atomic force microscopy
使用高速原子力显微镜揭示登革热病毒结构动力学和构象变化
  • 批准号:
    24K18450
  • 财政年份:
    2024
  • 资助金额:
    $ 30.78万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Atomic scale reactivity of small islands of a bimetallic alloy on ceria to small molecules investigated by ultrahigh resolution atomic force microscopy
通过超高分辨率原子力显微镜研究二氧化铈上双金属合金小岛对小分子的原子尺度反应性
  • 批准号:
    24K01350
  • 财政年份:
    2024
  • 资助金额:
    $ 30.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
State-of-the-art atomic force microscopy facilities for South Australia
南澳大利亚最先进的原子力显微镜设施
  • 批准号:
    LE240100129
  • 财政年份:
    2024
  • 资助金额:
    $ 30.78万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Pushing the envelope: atomic force microscopy imaging of the bacterial outer membrane during growth and division
挑战极限:生长和分裂过程中细菌外膜的原子力显微镜成像
  • 批准号:
    BB/X00760X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.78万
  • 项目类别:
    Research Grant
A New Nano Tip Fabrication Technique for Atomic Force Microscopy
原子力显微镜的新型纳米尖端制造技术
  • 批准号:
    DP230100637
  • 财政年份:
    2023
  • 资助金额:
    $ 30.78万
  • 项目类别:
    Discovery Projects
Magnetic imaging by the locally induced anomalous Nernst effect using atomic force microscopy
使用原子力显微镜通过局部诱发的异常能斯特效应进行磁成像
  • 批准号:
    23K04579
  • 财政年份:
    2023
  • 资助金额:
    $ 30.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Characterization of super adhesive aerosols on the basis of individual particle analysis using atomic force microscopy
基于原子力显微镜单个颗粒分析的超粘性气溶胶表征
  • 批准号:
    22KJ1464
  • 财政年份:
    2023
  • 资助金额:
    $ 30.78万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Using atomic force microscopy to explore the processes and re-organisations that occur during bacterial growth and division and how these are influenc
使用原子力显微镜探索细菌生长和分裂过程中发生的过程和重组以及它们如何影响细菌
  • 批准号:
    2887441
  • 财政年份:
    2023
  • 资助金额:
    $ 30.78万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了