Statistical methods for estimation of copy number from next-generation sequencing
估计下一代测序拷贝数的统计方法
基本信息
- 批准号:7935506
- 负责人:
- 金额:$ 37.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-22 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAreaAttentionBioinformaticsBiologicalClinicalCommunitiesComputer SystemsComputing MethodologiesConfidence IntervalsCopy Number PolymorphismDNA copy numberDataData SourcesDetectionDevelopmentDiseaseExperimental DesignsGenomeGenomicsHealthHumanHuman GenomeIndividualLengthLocationMalignant NeoplasmsMapsModelingMorphologic artifactsNaturePatientsPhenotypePopulationProceduresProcessReadingResearchResearch DesignResearch InfrastructureResearch PersonnelResolutionResourcesSamplingSensitivity and SpecificitySeriesSingle Nucleotide PolymorphismSolidStatistical MethodsStructureSystemTechniquesTechnologyTranslatingTranslationsVariantWorkbasechromatin immunoprecipitationcluster computingcomparative genomic hybridizationcomputerized data processingcostdesigndisease phenotypeexperiencegenome sequencingimprovedinterestmarkov modelmethod developmentnext generationnovelresearch studytooluser-friendlyweb interface
项目摘要
DESCRIPTION (provided by applicant):
This application addresses board Challenge Area (08) Genomics and specific challenge topic, 08-DA-102 Improved Bioinformatics Analysis for Deep Sequencing. The number of human samples undergoing whole-genome sequencing is expected to increase dramatically in the next few years, as advances in next-generation sequencing technologies continue to lower the cost of sequencing. In addition to detection of sequence variation, these data can be used to estimate DNA copy number variation and subsequently to examine correlation between copy number and phenotype. In this proposal, we aim to develop a series of computational steps and integrated analysis pipeline for accurate estimation of copy number from next-generation sequencing data. This involves efficient processing of the sequencing data, including appropriate alignment procedures and correction for experiment artifacts. For estimation of the copy number along chromosomal location, we will develop novel segmentation procedures, both for a single sample and for multiple samples, to take advantage of the specific nature of sequencing data. Importantly, we also address issues in experimental design, especially the effect of depth of sequencing (genome coverage) and read length on the resolution and accuracy of copy number profiles. We use data from a number of platforms including Solexa, SOLiD, and CompleteGenomes for our studies. The pipeline developed in this proposal will be implemented on a powerful distributed computing system and will be made available freely to the research community. The results of this project will thus enable efficient extraction of copy number from whole-genome sequencing data and will facilitate rapid translation of next-generation sequencing technology to identify structural variations associated with normal or disease phenotypes.
描述(由申请人提供):
该应用程序解决了板挑战领域(08)基因组学和特定的挑战主题,08-DA-102改进的生物信息学分析深度测序。随着下一代测序技术的进步继续降低测序成本,预计未来几年进行全基因组测序的人类样本数量将大幅增加。除了检测序列变异之外,这些数据还可用于估计DNA拷贝数变异,并随后检查拷贝数与表型之间的相关性。在这项提案中,我们的目标是开发一系列的计算步骤和集成的分析管道,以准确估计下一代测序数据的拷贝数。这涉及测序数据的有效处理,包括适当的比对程序和实验伪影的校正。为了估计沿着染色体位置的拷贝数沿着,我们将开发新的分割程序,用于单个样品和多个样品,以利用测序数据的特定性质。重要的是,我们还解决了实验设计中的问题,特别是测序深度(基因组覆盖率)和读取长度对拷贝数分布图的分辨率和准确性的影响。我们使用来自多个平台的数据,包括Solexa、SOLiD和CompleteGenomes。本提案中开发的管道将在一个功能强大的分布式计算系统上实现,并将免费提供给研究界。因此,该项目的结果将能够从全基因组测序数据中有效提取拷贝数,并将促进下一代测序技术的快速翻译,以识别与正常或疾病表型相关的结构变异。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter J Park其他文献
Identification of regions in the HOX cluster that can confer repression in a Polycomb-dependent manner
- DOI:
10.1186/1756-8935-6-s1-p86 - 发表时间:
2013-03-01 - 期刊:
- 影响因子:3.500
- 作者:
Caroline J Woo;Peter V Kharchenko;Laurence Daheron;Peter J Park;Robert E Kingston - 通讯作者:
Robert E Kingston
Peter J Park的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter J Park', 18)}}的其他基金
Data Analysis Center for Somatic Mosaicism Across Human Tissues Network
人体组织网络体细胞镶嵌数据分析中心
- 批准号:
10662721 - 财政年份:2023
- 资助金额:
$ 37.62万 - 项目类别:
Development of an Efficient High Throughput Technique for the Identification of High-Impact Non-Coding Somatic Variants Across Multiple Tissue Types
开发一种高效的高通量技术,用于鉴定跨多种组织类型的高影响力非编码体细胞变异
- 批准号:
10662860 - 财政年份:2023
- 资助金额:
$ 37.62万 - 项目类别:
Mutational signature analysis: methods and applications to the clinic
突变特征分析:方法和临床应用
- 批准号:
10418967 - 财政年份:2022
- 资助金额:
$ 37.62万 - 项目类别:
Mutational signature analysis: methods and applications to the clinic
突变特征分析:方法和临床应用
- 批准号:
10618248 - 财政年份:2022
- 资助金额:
$ 37.62万 - 项目类别:
Interoperability and Collaboration with the Common Fund Data Ecosystem to Improve Utility of 4DN Data
与共同基金数据生态系统的互操作性和协作,以提高 4DN 数据的实用性
- 批准号:
10683513 - 财政年份:2021
- 资助金额:
$ 37.62万 - 项目类别:
Interoperability and Collaboration with the Common Fund Data Ecosystem to Improve Utility of 4DN Data
与共同基金数据生态系统的互操作性和协作,以提高 4DN 数据的实用性
- 批准号:
10406676 - 财政年份:2021
- 资助金额:
$ 37.62万 - 项目类别:
Interoperability and Collaboration with the Common Fund Data Ecosystem to Improve Utility of 4DN Data
与共同基金数据生态系统的互操作性和协作,以提高 4DN 数据的实用性
- 批准号:
10907133 - 财政年份:2021
- 资助金额:
$ 37.62万 - 项目类别:
Identification of Transposable Element Insertions in the Kids First Data
Kids First 数据中转座元件插入的识别
- 批准号:
10172875 - 财政年份:2020
- 资助金额:
$ 37.62万 - 项目类别:
1/2-Somatic mosaicism and autism spectrum disorder
1/2-躯体镶嵌和自闭症谱系障碍
- 批准号:
9246015 - 财政年份:2016
- 资助金额:
$ 37.62万 - 项目类别:
Linking sequence and copy number variation to eye diseases by regulatory genomics
通过调控基因组学将序列和拷贝数变异与眼部疾病联系起来
- 批准号:
9044785 - 财政年份:2016
- 资助金额:
$ 37.62万 - 项目类别:
相似海外基金
Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
- 批准号:
LP170100311 - 财政年份:2018
- 资助金额:
$ 37.62万 - 项目类别:
Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
- 批准号:
1736326 - 财政年份:2017
- 资助金额:
$ 37.62万 - 项目类别:
Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2017
- 资助金额:
$ 37.62万 - 项目类别:
Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
- 批准号:
375876714 - 财政年份:2017
- 资助金额:
$ 37.62万 - 项目类别:
Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2016
- 资助金额:
$ 37.62万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2015
- 资助金额:
$ 37.62万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2014
- 资助金额:
$ 37.62万 - 项目类别:
Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
- 批准号:
8689532 - 财政年份:2014
- 资助金额:
$ 37.62万 - 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
- 批准号:
1329780 - 财政年份:2013
- 资助金额:
$ 37.62万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
- 批准号:
1329745 - 财政年份:2013
- 资助金额:
$ 37.62万 - 项目类别:
Standard Grant