Multiresolution-fractal modeling for brain tumor detection
用于脑肿瘤检测的多分辨率分形模型
基本信息
- 批准号:7988732
- 负责人:
- 金额:$ 10.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2011-10-15
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAreaBase of the BrainBenignBiological Neural NetworksBrainBrain NeoplasmsCharacteristicsChildChildhoodChildhood Brain NeoplasmClassificationCognitiveCommunity Clinical Oncology ProgramComplexComputer softwareDetectionDevelopmentDevicesDiagnosisDiagnosticDiagnostic ImagingDiseaseDouble-Blind MethodDrug FormulationsDrug usageEdemaEvaluationExcisionFamilyFractalsFutureGoalsGoldHealthcareHistocompatibility TestingHospitalsImageImageryKnowledgeLesionLiteratureMRI ScansMachine LearningMagnetic ResonanceMagnetic Resonance ImagingManualsMapsMeasurementMedical ImagingMethodsModelingModificationMorphologic artifactsMotionMovementNecrosisNoiseOperative Surgical ProceduresPathologyPatientsPediatric HospitalsPerformancePhiladelphiaPhysiciansPlayProcessPropertyProtocols documentationProtonsRadiationRelaxationReportingResearchResearch Project GrantsResidual TumorsResidual stateRiskRoleRotationScientistSensitivity and SpecificityShapesSignal TransductionSiteSkinSliceSolutionsStratificationStructureStudy SectionSurfaceSurgically-Created Resection CavitySystemTechniquesTestingTextureTimeTissuesTranslationsTreatment outcomeTumor TissueTumor VolumeUnited StatesValidationVariantWorkbasebrain tissuecancer therapyclinically significantdensitydesigndirect applicationdosimetryevaluation/testingexperiencefeedinggray matterimage processingimage registrationimaging modalityimprovedinnovationinterestmalignant neurologic neoplasmsmultimodalityneuro-oncologynovelobject recognitionpre-clinicalprospectivepublic health relevanceresearch clinical testingresearch studyresponsetooltreatment planningtreatment strategytumorwhite matter
项目摘要
DESCRIPTION (provided by applicant): The PI's long-term research goal is to develop a fully functional automated robust CAD tool for accurate pediatric brain tumor volume segmentation and tracking over time. Note the current practice in brain tumor volume segmentation involves manual tracing and segmentation of suspected tumor areas in multimodality MRI which is time consuming, labor intensive, and may be imprecise. In an effort to reduce cognitive sequelae, contemporary protocols employ risk-adapted therapy in which risk stratification is based on volume of residual tumor after surgical resection and presence of metastatic disease at diagnosis. Therefore, further improvement in cancer treatment outcome in children is unlikely to be achieved without improved knowledge of tumor volume and classification among other factors. In addition, such automated volume computation and tracking tool would be of value as an adjunct marker in following up patients with brain tumors. This will, in turn, help the physicians to make important patient management decisions about surgery planning, critical radiation treatment planning modifications, treatment field modifications, localized control, sites of metastatic disease and post therapy response evaluation. However, development of such automated and precise tumor volume segmentation CAD tool requires solution to a few challenges such as detection of hard-to-detect brain tumor (small residual after surgery, poorly enhanced, multi foci and irregularly shaped) and abnormalities (edema, necrosis, and larger resection cavity due to surgery) detection and classification. This project aims at development, testing, and evaluation of innovative techniques and tools that will assist feature-based detection, segmentation and classification of brain tumor and a few specific abnormalities.} The specific aims of this project are: 1) Spline-multiresolution wavelet-fractal feature extraction; 2) MR sequence-dependant feature fusion and tumor/abnormality size and volume determination for improved detection; 3) Optimized feature fusion for improved tumor, tissue and abnormality classification; and 4) Algorithm testing and validation. {If successful, our method will allow for the automatic computation of brain tumors and abnormalities with improved accuracy, which can provide a rapid, objective, reproducible, and easily reported assessment of the disease. The results obtained from this project will have immediate impact in pediatric neuroradiology practice by providing an accurate, objective, and consistent way to evaluate and interpret brain tumors and associated abnormalities.
PUBLIC HEALTH RELEVANCE: This project aims at development, testing, and evaluation of novel feature-based algorithms for robust, accurate and reproducible brain tumor and other abnormalities detection and classification. Such identification and classification will then be used to obtain precise segmentation of hard-to-detect brain tumors and abnormalities. We define hard-to-detect brain tumor as lesions that are small (residual after surgery), poorly enhanced, multi foci and irregularly shaped and abnormalities as edema, necrosis, and larger resection cavity due to surgery respectively. The algorithms capable of reliably and accurately computing segmented tumor volume would be of value as an adjunct marker in following up patients with brain tumors. Such a tumor volume quantification method would also have direct application in pre-clinical surgery planning and therapy trials leading to novel treatment strategies and devices. The results obtained from this project will have immediate impact in neuroradiology practice by providing an accurate, objective, and consistent way to evaluate and interpret brain tumors.
描述(由申请人提供):PI的长期研究目标是开发一种功能齐全的自动化健壮的CAD工具,用于准确的儿童脑肿瘤体积分割和跟踪。注意,目前脑肿瘤体积分割的做法是在多模态MRI中手工追踪和分割疑似肿瘤区域,这是耗时、劳动密集型的,而且可能不精确。为了减少认知后遗症,当代治疗方案采用风险适应疗法,其中风险分层基于手术切除后残留肿瘤的体积和诊断时是否存在转移性疾病。因此,如果不提高对肿瘤体积和分类等因素的认识,儿童癌症治疗结果的进一步改善是不可能实现的。此外,这种自动体积计算和跟踪工具在脑肿瘤患者随访中具有辅助标记价值。反过来,这将帮助医生做出重要的病人管理决定,包括手术计划,关键放射治疗计划修改,治疗领域修改,局部控制,转移性疾病部位和治疗后反应评估。然而,这种自动化、精确的肿瘤体积分割CAD工具的开发需要解决一些挑战,如难以检测的脑肿瘤(术后残留小、增强差、多病灶、形状不规则)的检测和异常(手术导致水肿、坏死、切除腔较大)的检测和分类。该项目旨在开发、测试和评估创新技术和工具,以帮助基于特征的脑肿瘤和一些特定异常的检测、分割和分类。本课题的具体目标是:1)样条-多分辨率小波-分形特征提取;2) MR序列依赖的特征融合和肿瘤/异常大小和体积的确定,以改进检测;3)优化特征融合,改进肿瘤、组织和异常分类;4)算法测试与验证。{如果成功,我们的方法将允许以更高的准确性自动计算脑肿瘤和异常,这可以提供快速、客观、可重复和易于报告的疾病评估。通过提供一种准确、客观、一致的方法来评估和解释脑肿瘤及相关异常,本项目获得的结果将对儿科神经放射学实践产生直接影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Khan M Iftekharuddin其他文献
Khan M Iftekharuddin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Khan M Iftekharuddin', 18)}}的其他基金
QUANTITATIVE IMAGE MODELING FOR BRAIN TUMOR ANALYSIS AND TRACKING
用于脑肿瘤分析和跟踪的定量图像建模
- 批准号:
9706156 - 财政年份:2018
- 资助金额:
$ 10.11万 - 项目类别:
Quantitative Image Modeling for Brain Tumor Analysis and Tracking
用于脑肿瘤分析和跟踪的定量图像建模
- 批准号:
9278165 - 财政年份:2016
- 资助金额:
$ 10.11万 - 项目类别:
Quantitative Image Modeling for Brain Tumor Analysis and Tracking
用于脑肿瘤分析和跟踪的定量图像建模
- 批准号:
9053035 - 财政年份:2016
- 资助金额:
$ 10.11万 - 项目类别:
Multiresolution-fractal modeling for brain tumor detection
用于脑肿瘤检测的多分辨率分形模型
- 批准号:
8374280 - 财政年份:2010
- 资助金额:
$ 10.11万 - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
- 批准号:
2322614 - 财政年份:2024
- 资助金额:
$ 10.11万 - 项目类别:
Standard Grant
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
- 批准号:
ES/Z50290X/1 - 财政年份:2024
- 资助金额:
$ 10.11万 - 项目类别:
Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
- 批准号:
NE/Y003365/1 - 财政年份:2024
- 资助金额:
$ 10.11万 - 项目类别:
Research Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
- 批准号:
534092360 - 财政年份:2024
- 资助金额:
$ 10.11万 - 项目类别:
Major Research Instrumentation
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 10.11万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
$ 10.11万 - 项目类别:
Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
- 批准号:
24K20765 - 财政年份:2024
- 资助金额:
$ 10.11万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 10.11万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: OPP-PRF: Tracking Long-Term Changes in Lake Area across the Arctic
博士后奖学金:OPP-PRF:追踪北极地区湖泊面积的长期变化
- 批准号:
2317873 - 财政年份:2024
- 资助金额:
$ 10.11万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 10.11万 - 项目类别:
Standard Grant