Endogenous Gas Molecules As Transcription Factors
内源性气体分子作为转录因子
基本信息
- 批准号:8072062
- 负责人:
- 金额:$ 34.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2013-05-31
- 项目状态:已结题
- 来源:
- 关键词:Animal Disease ModelsAwardBehaviorBindingBiologicalBiological ModelsCarbon MonoxideCardiovascular systemCationsCell ProliferationCell physiologyCellsComplexDNADNA RepairDNA biosynthesisDiseaseDivalent CationsEnvironmentEnzymesFosteringGasesGene ExpressionGene Expression RegulationGenesGenetic TranscriptionGleanHealthHemeIn VitroIonsIronLaboratoriesLifeMediator of activation proteinMedicineMetabolicMetalsMolecularNitric OxideOxygenPathologyPolymerasePrizeProcessPropertyPublic HealthRegulationRelaxationRoleSignal TransductionTestingTimeToxinWaste ProductsWorkbehavior influencebiological adaptation to stressheme oxygenase-1in vivoinnovationnovelprototyperepairedresponsesensorstemtheoriestranscription factor
项目摘要
DESCRIPTION (provided by applicant): The importance of gas molecules in mammalian survival is exemplified by the requisite need for oxygen to sustain life. In 2000 the Noble Prize in Medicine was awarded for the discovery and characterization of nitric oxide (NO) as endothelial derived relaxation factor. This discovery revolutionized how we view gas molecules and spurned the activity of numerous laboratories to study the molecular mechanisms by which NO regulated and modulated cellular function, particularly in the cardiovascular arena. More recently in 1998, a second functional gas molecule was revealed; carbon monoxide, touted as a toxin to avoid, was shown to be a biologically active gas molecule with potent cytoprotective properties in vitro and in vivo at low concentrations. This discovery stemmed from work on the enzyme heme oxygenase-1, which is an inducible stress response gene that generates CO endogenously as it catabolizes heme in all cells. CO and NO have been well studied and continue to be evaluated from a mechanistic standpoint in numerous model systems. A great deal of information has been gleaned regarding the action of these gases related to signaling cascades and downstream gene regulation. CO unlike NO is non-reactive and acts on divalent cations such as iron contained in heme moieties of numerous enzymes to modulate their function. Whether CO binds to other metal cations is likely but has not yet been studied. Until the elucidation of these gases as biological mediators, gases have carried the dogma of simply being necessary to either fulfill metabolic requirements of the cell or as simple waste products of enzymatic processes. We believe there is a greater role for gases in overall cellular function and behavior and offer the innovative hypothesis that CO, which we will use as the prototype gas for our studies, functions as a gaseous transcriptional regulator operating as a homeostatic sensor within all cells at the level of DNA dynamics. We believe this fits the purpose of the EUREKA mechanism because it is a novel innovative and unconventional hypothesis which if proven to be valid will reshape current theory of DNA regulation, but also many aspects of cellular function and behavior including gene expression, but perhaps more importantly DNA damage and repair, as well as DNA synthesis and proliferation. Our central hypothesis is that gaseous CO interacts directly with DNA via metal ions in complex with polymerases and topoisomersases present on DNA. In the time allotted for this work we will evaluate the interaction of CO with DNA and how this influences transcription, recognition of damage and proliferation in the cell. We will test our hypothesis with the following aims: Specific Aim 1: To test the ability of CO to modulate DNA dynamics. Specific Aim 2: To evaluate the consequences of CO binding to DNA and/or polymerase to regulate transcription by fostering the unwinding of DNA and facilitating polymerase activity. Specific Aim 3: To evaluate the role of CO in DNA synthesis and the regulation of cellular proliferation. PUBLIC HEALTH RELEVANCE: Understanding how a cell controls its own destiny and responds to its environment is critical to scientific discoveries of how to interfere and correct an inappropriate response or change in the cell function that underlie the origins of disease pathology. We are proposing that the gas carbon monoxide (CO), which is generated endogenously by all cells, is a molecule that directly influences cellular behavior by influencing how DNA is regulated for gene expression. Low, non-toxic concentrations of CO impart potent protection and repair in animal models of disease. This proposal will focus on carbon monoxide and the innovative hypothesis that a gas molecule can dictate a cellular response at the level of the DNA.
描述(申请人提供):气体分子在哺乳动物生存中的重要性体现在维持生命所必需的氧气上。2000年,诺贝尔医学奖因发现和表征一氧化氮(NO)作为内皮细胞衍生的松弛因子而获奖。这一发现彻底改变了我们看待气体分子的方式,并摒弃了众多实验室研究一氧化氮调节和调节细胞功能的分子机制的活动,特别是在心血管领域。最近在1998年,第二种功能气体分子被发现;一氧化碳被吹捧为一种需要避免的毒素,被证明是一种具有生物活性的气体分子,在体外和体内低浓度下具有强大的细胞保护性能。这一发现源于对血红素加氧酶-1的研究,这是一种可诱导的应激反应基因,当它在所有细胞中分解血红素时,会内源性地产生一氧化碳。CO和NO已经得到了很好的研究,并在许多模型系统中继续从力学的角度进行评估。关于这些气体与信号级联和下游基因调控有关的作用,已经收集了大量信息。与NO不同的是,CO不是反应性的,它作用于许多酶的血红素部分中的二价阳离子,如铁,以调节它们的功能。CO是否与其他金属阳离子结合是可能的,但尚未被研究。在这些气体作为生物媒介被阐明之前,气体一直被认为是满足细胞新陈代谢要求所必需的,或者是作为酶过程的简单废物。我们认为气体在整个细胞功能和行为中发挥着更大的作用,并提出了一个创新的假设,即CO作为我们研究的原型气体,在DNA动力学水平上作为一个气体转录调节因子在所有细胞中作为动态平衡传感器运行。我们认为这符合Eureka机制的目的,因为它是一个新的创新和非传统的假设,如果被证明有效,将重塑当前的DNA调控理论,但也将重塑细胞功能和行为的许多方面,包括基因表达,但可能更重要的是DNA损伤和修复,以及DNA合成和增殖。我们的中心假设是,气态CO通过与DNA上存在的聚合酶和拓扑异构酶形成的络合物中的金属离子直接与DNA相互作用。在分配给这项工作的时间里,我们将评估CO与DNA的相互作用,以及这如何影响细胞中的转录、损伤识别和增殖。我们将通过以下目标来验证我们的假设:具体目标1:测试CO调节DNA动力学的能力。具体目标2:评估CO与DNA和/或聚合酶结合,通过促进DNA解离和促进聚合酶活性来调节转录的后果。具体目的3:评价一氧化碳在DNA合成和细胞增殖调控中的作用。公共卫生相关性:了解细胞如何控制自己的命运和对环境的反应,对于如何干预和纠正作为疾病病理起源基础的细胞功能中的不适当反应或变化的科学发现至关重要。我们提出,由所有细胞内源性产生的气体一氧化碳(CO)是一种通过影响DNA对基因表达的调节而直接影响细胞行为的分子。在疾病的动物模型中,低浓度、无毒的CO提供了有效的保护和修复。这项提议将重点放在一氧化碳和创新假设上,即气体分子可以在DNA水平上决定细胞反应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LEO E OTTERBEIN其他文献
LEO E OTTERBEIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LEO E OTTERBEIN', 18)}}的其他基金
Early-Stage Preclinical Validation of Carbon Monoxide Prodrugs for Acute Kidney Injury
一氧化碳前药治疗急性肾损伤的早期临床前验证
- 批准号:
10525896 - 财政年份:2022
- 资助金额:
$ 34.11万 - 项目类别:
Early-Stage Preclinical Validation of Carbon Monoxide Prodrugs for Acute Kidney Injury
一氧化碳前药治疗急性肾损伤的早期临床前验证
- 批准号:
10665011 - 财政年份:2022
- 资助金额:
$ 34.11万 - 项目类别:
Examining Carbon Monoxide to Treat Inflammatory Conditions using Experimental Colitis Models
使用实验性结肠炎模型检查一氧化碳治疗炎症的作用
- 批准号:
10437776 - 财政年份:2019
- 资助金额:
$ 34.11万 - 项目类别:
Examining Carbon Monoxide to Treat Inflammatory Conditions using Experimental Colitis Models
使用实验性结肠炎模型检查一氧化碳治疗炎症的作用
- 批准号:
10654693 - 财政年份:2019
- 资助金额:
$ 34.11万 - 项目类别:
HemeOxygenase-1 and Transplant Tolerance
HemeOxygenase-1 和移植耐受性
- 批准号:
8311915 - 财政年份:2011
- 资助金额:
$ 34.11万 - 项目类别:
Endogenous Gas Molecules As Transcription Factors
内源性气体分子作为转录因子
- 批准号:
8266362 - 财政年份:2009
- 资助金额:
$ 34.11万 - 项目类别:
Endogenous Gas Molecules As Transcription Factors
内源性气体分子作为转录因子
- 批准号:
7903074 - 财政年份:2009
- 资助金额:
$ 34.11万 - 项目类别:
相似海外基金
Doctoral Dissertation Improvement Award: Variability in Silcrete Heat Treatment Technology and Implications for Modern Human Behavior
博士论文改进奖:硅混凝土热处理技术的变异性及其对现代人类行为的影响
- 批准号:
2321951 - 财政年份:2023
- 资助金额:
$ 34.11万 - 项目类别:
Standard Grant
Research Initiation Award: Designing Synthetic Polyglycidol-based Polymeric Networks to Influence Cellular Behavior
研究启动奖:设计基于合成聚缩水甘油的聚合物网络以影响细胞行为
- 批准号:
2200484 - 财政年份:2022
- 资助金额:
$ 34.11万 - 项目类别:
Standard Grant
Research Initiation Award: Establishing the Fundamentals of Spin-Crossover Behavior and Catalysis in Single-Chain Nanoparticle Metallopolymers
研究启动奖:建立单链纳米颗粒金属聚合物中自旋交叉行为和催化的基础
- 批准号:
2200447 - 财政年份:2022
- 资助金额:
$ 34.11万 - 项目类别:
Standard Grant
Research Initiation Award: Investigation on Tribo-charging Behavior of Agricultural Particles in the Development of Water-free Bio-separation Approach for Biomass Residues
研究启动奖:生物质残留物无水生物分离方法开发中农业颗粒摩擦带电行为的研究
- 批准号:
1900894 - 财政年份:2019
- 资助金额:
$ 34.11万 - 项目类别:
Standard Grant
Doctoral Dissertation Improvement Award: The Effect of Population Aggregation on Food Acquisition Behavior
博士论文改进奖:种群聚集对食物获取行为的影响
- 批准号:
1745219 - 财政年份:2017
- 资助金额:
$ 34.11万 - 项目类别:
Standard Grant
Research Initiation Award: Mathematical model of the impact of social behavior in the transmission dynamics of HIV epidemics
研究启动奖:社会行为对艾滋病毒流行传播动态影响的数学模型
- 批准号:
1743812 - 财政年份:2017
- 资助金额:
$ 34.11万 - 项目类别:
Standard Grant
Research Intiation Award: Long Time Behavior for Systems of Coupled Partial Differential Equations
研究启动奖:耦合偏微分方程组的长期行为
- 批准号:
1601127 - 财政年份:2016
- 资助金额:
$ 34.11万 - 项目类别:
Standard Grant
Doctoral Dissertation Improvement Award: Investigating The Effect Of Environmental Variability On Mobility And Territorial Behavior
博士论文改进奖:研究环境变化对流动性和领地行为的影响
- 批准号:
1623771 - 财政年份:2016
- 资助金额:
$ 34.11万 - 项目类别:
Standard Grant
Research Initiation Award: Mathematical model of the impact of social behavior in the transmission dynamics of HIV epidemics
研究启动奖:社会行为对艾滋病毒流行传播动态影响的数学模型
- 批准号:
1505498 - 财政年份:2015
- 资助金额:
$ 34.11万 - 项目类别:
Standard Grant
Doctoral Dissertation Improvement Award: Relationships Between Consumer Behavior And Regional Identity
博士论文改进奖:消费者行为与区域认同的关系
- 批准号:
1550581 - 财政年份:2015
- 资助金额:
$ 34.11万 - 项目类别:
Standard Grant














{{item.name}}会员




