Intracranial EEG for Neuronal Oscillatory Contingency during Cognitive Tasks

认知任务期间神经元振荡意外事件的颅内脑电图

基本信息

  • 批准号:
    7943074
  • 负责人:
  • 金额:
    $ 21.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-30 至 2012-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Brain computer interfaces (BCI) involving motor and sensory systems have been successful in restoring function and in improving the lives of patients with neurological diseases. These devices, ranging from deep brain stimulators for Parkinson's disease to more involved devices capable of recapitulating motor function, are becoming increasingly available with recent technological advances and with a greater understanding of underlying neural circuitry. A major area not addressed by these devices is that of higher cognitive functions, such as memory and executive planning. Here, we propose to use intracranial electrocorticographic signals, captured from subdural and depth electrodes implanted in patients with pharmacologically intractable epilepsy, to extend the role of BCIs to the cognitive domain. The central hypothesis of this proposal is that the patterns of neuronal activity that underlie memory storage and recall can be used to adjust stimulus presentation in a cognitive task to augment learning. We propose to develop a BCI that measures and analyzes intracranial neural activity in real time as patients engage in a free recall task, a standard method of measuring one's ability to encode and retrieve episodic memories. Using machine-learning algorithms, we will identify the precise spatiotemporal patterns of electrophysiological brain activity that lead to optimal memory formation. We will compute these patterns separately for each patient. Our system will thus adapt to each individual's brain activity. To close the functional loop between the patient's brain and our system, we will take advantage of these naturally occurring optimal spatiotemporal patterns for memory formation and trigger stimulus presentation on their presence. Animal studies have shown that by presenting stimuli contingent on the oscillatory state of the hippocampus, learning rates can be improved. We hope to demonstrate that conditioning stimulus presentation on the presence of these optimal spatiotemporal patterns of neural activity will improve both memory storage and recall in our patients as well. Such a demonstration will establish a causative, rather than correlational, relationship between these patterns of activity and memory encoding. Furthermore, our research will extend the domain of BCIs to the realm of cognition and memory, and lay the groundwork for a range of BCI systems that can enhance a wide variety of human cognitive functions. PUBLIC HEALTH RELEVANCE: Brain computer interfaces (BCIs) are machines that directly interface with the brain by measuring and analyzing neural activity in real time. Recent BCIs have played an integral role in rehabilitating patients suffering from Parkinson's disease, severe depression, and epilepsy. One critical area not addressed by BCIs to date is that of higher cognitive functions, including memory -- one of the major deficits in a number of neural diseases, including Alzheimer's disease. Here we propose a novel BCI for improving memory performance both in memory-impaired and cognitively normal individuals.
描述(由申请人提供):涉及运动和感觉系统的脑机接口(BCI)已成功恢复神经系统疾病患者的功能并改善其生活。这些设备,从帕金森病的深部脑刺激器到能够重现运动功能的更复杂的设备,随着最近的技术进步和对潜在神经回路的更深入了解,越来越多地可用。这些设备没有解决的一个主要领域是更高的认知功能,如记忆和执行计划。在这里,我们建议使用颅内皮层电图信号,从硬脑膜下和深部电极植入难治性癫痫患者,扩大脑机接口的作用,认知领域。这个提议的核心假设是,作为记忆存储和回忆基础的神经元活动模式可以用来调整认知任务中的刺激呈现,以增强学习。我们建议开发一种脑机接口,当患者进行自由回忆任务时,可以真实的测量和分析颅内神经活动,这是一种测量编码和检索情景记忆能力的标准方法。使用机器学习算法,我们将识别导致最佳记忆形成的电生理大脑活动的精确时空模式。我们将为每位患者单独计算这些模式。因此,我们的系统将适应每个人的大脑活动。为了关闭病人大脑和我们系统之间的功能回路,我们将利用这些自然发生的最佳时空模式来形成记忆,并在它们存在时触发刺激呈现。动物研究表明,通过呈现海马体振荡状态的刺激,学习率可以提高。我们希望证明,条件刺激呈现在这些最佳时空模式的神经活动的存在下,将改善我们的患者的记忆储存和回忆。这样的演示将在这些活动模式和记忆编码之间建立一种因果关系,而不是相关关系。此外,我们的研究将把BCI的领域扩展到认知和记忆领域,并为一系列可以增强各种人类认知功能的BCI系统奠定基础。 公共卫生相关性:脑机接口(BCI)是通过真实的时间测量和分析神经活动直接与大脑接口的机器。最近的脑机接口在帕金森病、严重抑郁症和癫痫患者的康复中发挥了不可或缺的作用。迄今为止,BCI尚未解决的一个关键领域是更高的认知功能,包括记忆-这是许多神经疾病(包括阿尔茨海默病)的主要缺陷之一。在这里,我们提出了一种新的脑机接口,用于改善记忆力受损和认知正常个体的记忆表现。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Jacob Kahana其他文献

Michael Jacob Kahana的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Jacob Kahana', 18)}}的其他基金

Targeted closed-loop intracranial brain-stimulation to improve episodic memory
有针对性的闭环颅内脑刺激可改善情景记忆
  • 批准号:
    10199066
  • 财政年份:
    2019
  • 资助金额:
    $ 21.55万
  • 项目类别:
Using Direct Brain Stimulation to Study Cognitive Electrophysiology
使用直接大脑刺激研究认知电生理学
  • 批准号:
    10016846
  • 财政年份:
    2019
  • 资助金额:
    $ 21.55万
  • 项目类别:
Using Direct Brain Stimulation to Study Cognitive Electrophysiology
使用直接大脑刺激研究认知电生理学
  • 批准号:
    10241427
  • 财政年份:
    2019
  • 资助金额:
    $ 21.55万
  • 项目类别:
Targeted closed-loop intracranial brain-stimulation to improve episodic memory
有针对性的闭环颅内脑刺激可改善情景记忆
  • 批准号:
    10440284
  • 财政年份:
    2019
  • 资助金额:
    $ 21.55万
  • 项目类别:
Targeted closed-loop intracranial brain-stimulation to improve episodic memory
有针对性的闭环颅内脑刺激可改善情景记忆
  • 批准号:
    10641003
  • 财政年份:
    2019
  • 资助金额:
    $ 21.55万
  • 项目类别:
Using Direct Brain Stimulation to Study Cognitive Electrophysiology
使用直接大脑刺激研究认知电生理学
  • 批准号:
    10654753
  • 财政年份:
    2019
  • 资助金额:
    $ 21.55万
  • 项目类别:
A Model-Based Approach to Understanding Memory Impairments in Normal Aging
基于模型的方法来了解正常衰老过程中的记忆损伤
  • 批准号:
    9127066
  • 财政年份:
    2015
  • 资助金额:
    $ 21.55万
  • 项目类别:
Electrophysiology of Human Spatial Cognition
人类空间认知的电生理学
  • 批准号:
    7871037
  • 财政年份:
    2009
  • 资助金额:
    $ 21.55万
  • 项目类别:
Integrated Interdisciplinary Training in Computational Neuroscience.
计算神经科学综合跨学科培训。
  • 批准号:
    7906059
  • 财政年份:
    2006
  • 资助金额:
    $ 21.55万
  • 项目类别:
Integrated Interdisciplinary Training in Computational Neuroscience
计算神经科学综合跨学科培训
  • 批准号:
    7496641
  • 财政年份:
    2006
  • 资助金额:
    $ 21.55万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 21.55万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 21.55万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 21.55万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 21.55万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 21.55万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 21.55万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 21.55万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 21.55万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 21.55万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 21.55万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了