Development and Use of rtfMRI for Self-control of Nicotine Craving

rtfMRI 的开发和使用用于自我控制尼古丁渴望

基本信息

  • 批准号:
    8087596
  • 负责人:
  • 金额:
    $ 56.27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-15 至 2013-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): This application aims to study the application of functional magnetic resonance imaging in real time (rtfMRI) as an operant training feedback mechanism for treating substance use disorders. Recent data suggest that individuals can reduce activity in some brain regions (e.g. anterior cingulate cortex, anterior insula, auditory cortex when they are presented with information about activation in that brain region. Experimental and clinical pain have been reduced with rtfMRI signal feedback from the rostral anterior cingulate in a manner proportional to reductions in the blood oxygenation level dependent (BOLD) signal from that region. These regions overlap with those involved in the effects of substances of abuse and the development of substance use disorders (SUDs). The initial information opens the possibility of applying neurofeedback to improve treatment outcomes in patient samples. The present application seeks to expand the investigation of these processes and validate their applicability to substance dependent volunteers. In initial studies we will examine the capacity of nicotine dependent volunteers to reduce their craving for cigarettes. This substance was selected for its high retention rates and prevalence and public health burden in the general population, but it is expected that future studies would explore other forms of addiction (e.g. cocaine, opiates). Our multidisciplinary team proposes to advance current knowledge in this area by: (1) using data not from a single brain region, but from networks involved in nicotine craving and dependence, thereby accounting for inter- individual differences in brain regional activation patterns during nicotine craving; (2) developing a quantifiable method by using arterial spin labeling (ASL); and (3) determining the influence of individual expectations on these processes (e.g. assessing the degree to which these effects are attributable to placebo-related responding). The developmental and experimental elements of this application will lead to new avenues for treatment that would be readily generalizable to other forms of drug addiction besides nicotine, and potentially impacting on the outcomes of the substantial numbers of individuals seeking substance abuse treatment. PUBLIC HEALTH RELEVANCE: The development of new methodology for the treatment of patients with substance use disorders would represent a significant advance in the therapeutics of these disorders. The studies proposed offer a new treatment alternative for these otherwise highly recurrent and chronic illnesses.
描述(申请人提供):本申请旨在研究实时功能磁共振成像(RtfMRI)作为治疗物质使用障碍的操作员训练反馈机制的应用。最近的数据表明,当个体被呈现有关大脑区域激活的信息时,他们可以减少某些大脑区域(如前扣带回皮质、前脑岛、听觉皮质)的活动。通过从嘴前扣带回反馈rtfMRI信号,实验性和临床疼痛的减少与该区域的血氧水平依赖(BOLD)信号的减少成正比。这些区域与滥用物质的影响和物质使用障碍(SUDS)的发展所涉及的区域重叠。最初的信息开启了应用神经反馈来改善患者样本治疗结果的可能性。本申请旨在扩大对这些过程的调查,并验证其对药物依赖志愿者的适用性。在最初的研究中,我们将检查尼古丁依赖志愿者减少对香烟的渴望的能力。这种物质之所以被选中,是因为它在普通人群中的保留率和流行率以及公共卫生负担很高,但预计未来的研究将探索其他形式的成瘾(例如可卡因、鸦片类药物)。我们的多学科团队建议通过以下方式推进这一领域的现有知识:(1)使用不是来自单个大脑区域的数据,而是来自参与尼古丁渴望和依赖的网络的数据,从而解释尼古丁渴望期间大脑区域激活模式的个体差异;(2)通过使用动脉自旋标记(ASL)开发一种可量化的方法;以及(3)确定个人预期对这些过程的影响(例如,评估这些影响归因于安慰剂相关反应的程度)。这一应用的发展和实验因素将导致新的治疗途径,这种方法很容易推广到尼古丁以外的其他形式的药物成瘾,并可能影响大量寻求药物滥用治疗的人的结果。 公共卫生相关性:治疗药物使用障碍患者的新方法的开发将代表着这些疾病的治疗方法的重大进步。建议的研究为这些高度复发和慢性疾病提供了一种新的治疗选择。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark K Greenwald其他文献

Mark K Greenwald的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark K Greenwald', 18)}}的其他基金

Development of cebranopadol, a potent dual MOP/NOP agonist, for the treatment of Opioid Use Disorder (OUD)
开发cebranopadol,一种有效的双重MOP/NOP激动剂,用于治疗阿片类药物使用障碍(OUD)
  • 批准号:
    10759100
  • 财政年份:
    2023
  • 资助金额:
    $ 56.27万
  • 项目类别:
Planning a Multi-Level Intervention to Reduce Substance Use Stigma in HIV Prevention and Care
规划多层次干预措施以减少艾滋病毒预防和护理中的药物使用耻辱
  • 批准号:
    10669764
  • 财政年份:
    2021
  • 资助金额:
    $ 56.27万
  • 项目类别:
Behavioral Economic Analysis of Medical Marijuana Use in HIV+ Patients
HIV 患者使用医用大麻的行为经济学分析
  • 批准号:
    8331559
  • 财政年份:
    2011
  • 资助金额:
    $ 56.27万
  • 项目类别:
Behavioral Economic Analysis of Medical Marijuana Use in HIV+ Patients
HIV 患者使用医用大麻的行为经济学分析
  • 批准号:
    8484810
  • 财政年份:
    2011
  • 资助金额:
    $ 56.27万
  • 项目类别:
Behavioral Economic Analysis of Medical Marijuana Use in HIV+ Patients
HIV 患者使用医用大麻的行为经济学分析
  • 批准号:
    8228758
  • 财政年份:
    2011
  • 资助金额:
    $ 56.27万
  • 项目类别:
Human Laboratory Model of Cocaine Treatment: Behavioral Economic Analysis
可卡因治疗的人体实验室模型:行为经济学分析
  • 批准号:
    7894996
  • 财政年份:
    2009
  • 资助金额:
    $ 56.27万
  • 项目类别:
Human Laboratory Model of Cocaine Treatment: Behavioral Economic Analysis
可卡因治疗的人体实验室模型:行为经济学分析
  • 批准号:
    7697838
  • 财政年份:
    2009
  • 资助金额:
    $ 56.27万
  • 项目类别:
Development and Use of rtfMRI for Self-control of Nicotine Craving
rtfMRI 的开发和使用用于自我控制尼古丁渴望
  • 批准号:
    7588461
  • 财政年份:
    2008
  • 资助金额:
    $ 56.27万
  • 项目类别:
Development and Use of rtfMRI for Self-control of Nicotine Craving
rtfMRI 的开发和使用用于自我控制尼古丁渴望
  • 批准号:
    8104244
  • 财政年份:
    2008
  • 资助金额:
    $ 56.27万
  • 项目类别:
Development and Use of rtfMRI for Self-control of Nicotine Craving
rtfMRI 的开发和使用用于自我控制尼古丁渴望
  • 批准号:
    8282904
  • 财政年份:
    2008
  • 资助金额:
    $ 56.27万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 56.27万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 56.27万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 56.27万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 56.27万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 56.27万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 56.27万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 56.27万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 56.27万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 56.27万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 56.27万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了