Role of endothelial cancer cell engulfment during metastatic brain invasion
内皮癌细胞吞噬在转移性脑侵袭过程中的作用
基本信息
- 批准号:8096364
- 负责人:
- 金额:$ 21.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-12 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsAnimal ModelAreaBindingBlood VesselsBlood capillariesBlood flowBrainBreast Cancer CellCancer PatientCaspaseCell DeathCellsCerebrumCessation of lifeComplexConfocal MicroscopyCytoskeletonDataElectron MicroscopyEmbolismEndothelial CellsEndotheliumEnzymesEpithelial CellsExtravasationFrequenciesGelatinase AGelatinase BGoalsGrantHypoxiaImageImaging TechniquesIndividualInfusion proceduresInhibition of Matrix Metalloproteinases PathwayInvadedKnockout MiceLeadLifeMalignant NeoplasmsMalignant neoplasm of brainMalignant neoplasm of lungMembraneMetastatic malignant neoplasm to brainMethodsMicrocirculationMicroscopyMolecularMonitorMorbidity - disease rateMusMutant Strains MiceMyosin ATPaseMyosin Light Chain KinaseNeoplasm MetastasisOutcomePathway interactionsPharmacologyPlayPreventionPreventivePrimary Brain NeoplasmsProcessProliferation MarkerRelative (related person)ResolutionRoleTestingTimeTransmission Electron MicroscopyTumor Cell InvasionVascular Endothelial Growth Factorsbasecancer cellcapillarycell killingeffective therapyimprovedin vivoinhibitor/antagonistkillingskinase inhibitormalignant breast neoplasmmelanomametastatic processmortalityneoplastic cellneutralizing antibodynew therapeutic targetnovelpreventresearch studytissue fixingtwo-photon
项目摘要
DESCRIPTION (provided by applicant): Brain metastases are a leading cause of mortality in cancer patients and there is currently no effective therapy that can prevent them. The search for therapies is limited by our poor understanding of the mechanisms of cancer cell brain invasion. We have recently discovered a novel mechanism of vascular plasticity that leads to the extravasation of emboli in the cerebral microcirculation. This process, which can clear any kind of material from the microvasculature, involves the engulfment of entire emboli by endothelial membrane projections and their subsequent translocation into the perivascular parenchyma. Our preliminary data shows that cancer cells undergo a similar process of microvascular engulfment. The goal of this proposal is to probe several potential roles of this mechanism in the metastatic process: a) cancer cells may co-opt this mechanism for the purpose of crossing the endothelial barrier and seeding the brain. This will be tested by using methods we have developed for transcranial two-photon imaging, confocal and electron microscopy. We will visualize at high spatial-temporal resolution the process of metastatic invasion in individual cerebral capillaries and determine if endothelial engulfment is required for cancer cell transvasation. b) the enveloping mechanism may help cancer cells remain insulated within microvessels promoting their latency. Using live and fixed tissue imaging and proliferation markers we will determine if cancer cells can remain dormant and viable for a long-term after microvessel engulfment. c) the engulfment process may serve as a surveillance mechanism by trapping and killing tumor cells within the vasculature. If the outcome of endothelial engulfment is death of malignant cells, we will monitor a variety of markers to characterize the death mechanism. Finally, we will examine several molecular pathways for their ability to modulate endothelial engulfment and will determine if this significantly impacts cancer cell transvasation, latency or survival. Together, these experiments will establish the importance of this mechanism of microvascular plasticity in the process of tumor invasion. Our results could suggest new targets for the prevention of brain metastasis.
PUBLIC HEALTH RELEVANCE: Brain metastases are a leading cause of morbidity and mortality in cancer patients. Our limited understanding of the mechanism by which tumor cells enter the brain is hampering the search for preventive therapies. We have discovered a novel mechanism of microvascular plasticity that could have a critical role in the process of tumor cell brain invasion. This grant proposes to use animal models and imaging techniques that we have developed to test the importance of this mechanism in the process of tumor invasion and to probe the effect of its pharmacological inhibition on the progression of brain metastases.
描述(由申请人提供):脑转移是癌症患者死亡的主要原因,目前没有有效的治疗方法可以预防。 由于我们对癌细胞脑侵袭机制的了解不足,对治疗方法的研究受到限制。 我们最近发现了一种新的机制,血管可塑性,导致脑微循环中的栓子外渗。 该过程可以从微血管系统清除任何种类的物质,涉及内皮膜突起对整个栓子的吞噬及其随后移位到血管周围实质中。 我们的初步数据表明,癌细胞经历了类似的微血管吞噬过程。 该提议的目标是探索该机制在转移过程中的几个潜在作用:a)癌细胞可能为了穿过内皮屏障和接种脑的目的而吸收该机制。 这将通过使用我们开发的经颅双光子成像,共聚焦和电子显微镜的方法进行测试。 我们将在高时空分辨率下观察单个脑毛细血管中转移性侵袭的过程,并确定内皮细胞吞噬是否是癌细胞渗透所必需的。B)包膜机制可以帮助癌细胞在微血管内保持绝缘,从而促进它们的潜伏期。 使用活的和固定的组织成像和增殖标记物,我们将确定癌细胞是否可以在微血管吞噬后长期保持休眠和存活。c)吞噬过程可以通过捕获和杀死脉管系统内的肿瘤细胞来充当监视机制。 如果内皮吞噬的结果是恶性细胞死亡,我们将监测各种标志物来表征死亡机制。 最后,我们将研究几种分子途径调节内皮细胞吞噬的能力,并确定这是否会显着影响癌细胞的渗透,潜伏期或生存。 总之,这些实验将确立这种微血管可塑性机制在肿瘤侵袭过程中的重要性。 我们的研究结果可能为预防脑转移提供新的靶点。
公共卫生相关性:脑转移是癌症患者发病率和死亡率的主要原因。 我们对肿瘤细胞进入大脑的机制的有限理解阻碍了预防性治疗的研究。 我们发现了一种新的微血管可塑性机制,可能在肿瘤细胞脑侵袭过程中发挥关键作用。 该基金建议使用我们开发的动物模型和成像技术来测试这种机制在肿瘤侵袭过程中的重要性,并探索其对脑转移进展的药理学抑制作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jaime Grutzendler其他文献
Jaime Grutzendler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jaime Grutzendler', 18)}}的其他基金
Vascular Mechanisms of Dementia: Cell-Type Specific Therapeutic and Imaging Strategies
痴呆症的血管机制:细胞类型特异性治疗和成像策略
- 批准号:
10523230 - 财政年份:2022
- 资助金额:
$ 21.61万 - 项目类别:
Mechanisms of axonal protection by astrocytes and microglia inAlzheimer disease
星形胶质细胞和小胶质细胞在阿尔茨海默病中的轴突保护机制
- 批准号:
10549778 - 财政年份:2022
- 资助金额:
$ 21.61万 - 项目类别:
Mechanisms of axonal protection by astrocytes and microglia inAlzheimer disease
星形胶质细胞和小胶质细胞在阿尔茨海默病中的轴突保护机制
- 批准号:
10319743 - 财政年份:2022
- 资助金额:
$ 21.61万 - 项目类别:
Diversity Supplement: Molecular probes to image and target the neurovascular unit in health and disease
多样性补充:对健康和疾病中的神经血管单元进行成像和靶向的分子探针
- 批准号:
10352897 - 财政年份:2021
- 资助金额:
$ 21.61万 - 项目类别:
Molecular probes to image and target the neurovascular unit in health and disease
分子探针对健康和疾病中的神经血管单元进行成像和靶向
- 批准号:
10545711 - 财政年份:2019
- 资助金额:
$ 21.61万 - 项目类别:
Therapeutic targeting of angiophagy to achieve microvascular recanalization
血管吞噬治疗靶向以实现微血管再通
- 批准号:
9918474 - 财政年份:2019
- 资助金额:
$ 21.61万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 21.61万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 21.61万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 21.61万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 21.61万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 21.61万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 21.61万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 21.61万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 21.61万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 21.61万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 21.61万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




