Compensating for Uncertainty Biases in Health Risk Judgments
补偿健康风险判断中的不确定性偏差
基本信息
- 批准号:7926647
- 负责人:
- 金额:$ 162.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-30 至 2013-09-29
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAffectAlgorithmsAnxietyBayesian AnalysisBenefits and RisksBindingBypassCase-Control StudiesClinicalClinical DataCognitiveCommunicationComplexComputer SimulationComputer softwareCoronary heart diseaseCounselingDataData SetDecision MakingDiseaseFaceFailureFrequenciesHealthHumanIllusionsIndividualInformed ConsentInstitutionInternetInterventionJudgmentLeadLightLogistic RegressionsMeasurementMeasuresMedicalMethodsNatureOptical IllusionsOutcomeOutputPaperPatientsPerceptionPhysiciansProbabilityProfessional counselorPsyche structureResearchRiskRisk FactorsSample SizeSampling ErrorsSoftware ToolsSolutionsSubgroupSurveysTechniquesTechnologyTest ResultTestingTimeUncertaintybaseclinical decision-makingdata formatdesignexperienceimprovedpreferencepublic health relevancerisk perceptionsimulationstatisticstheories
项目摘要
DESCRIPTION (provided by applicant): Accurate statistical data about medical intervention outcomes are often confusing, incomplete or inaccessible to patients. Without such information, patients are frustrated, and the spirit of informed consent is thwarted. Even when relevant data are available, they may not be correctly communicated. Practicing physicians may not provide accurate counsel about, for example, the probabilistic implications of test results. Consequently, false positive results from medical tests result in needless anxiety, and false negatives result in needless delay. Moreover, some physicians recommend treatments they prefer instead of undertaking the time-consuming effort to make the patient an informed decision maker. Physicians and medical counselors themselves are often confused about the implications of complex numerical information. Poor communication of risks can lead to patients making poor choices. Physicians and their patients will benefit from software tools that answer two needs within the broad field of clinical decision support: (1) helping explain the meaning of the results of a medical test in a way that is understandable and accurate, and (2) helping to decide among treatment options. The relevant information is usually encoded in terms of outcome frequencies or probabilities, but there are two serious complicating issues. The first issue is that there is usually uncertainty about the data arising from sampling error due to limited sample sizes, random measurement error, and a variety of systematic measurement biases. The second complicating issue is that humans are beset by a host of cognitive illusions that confuse their perception of frequency and probability information. Our proposed technology to address these two software needs differs from previous attempts in two main ways. First, we explicitly represent the uncertainty about frequencies and probabilities using robust Bayes methods (also known as Bayesian sensitivity analysis) which are part of the theory of imprecise probabilities. These methods allow us to generate practical advice in the face of uncertainty. For instance, when information is added to an assessment to personalize it for an individual, the uncertainty about a probability might widen if sample sizes are much smaller for subgroups. Second, we make use of findings in psychometry to compensate for cognitive illusions in the perception of frequencies and probabilities. Although statistical innumeracy is often attributed to mental biases and misperceptions, we believe that recent research is convincing that many of the misunderstandings and failures to communicate are caused by flawed presentation of medical statistics. Clinical and other evidence suggest that data formats strongly affect interpretability. Our techniques will compensate for cognitive biases and convey risks in a proper light so that their implications are easily understood.
PUBLIC HEALTH RELEVANCE: Statistical data about test results and medical intervention outcomes are often confusing because imprecision about frequencies is hard to convey and because of multiple cognitive illusions about uncertainty. Physicians and their patients will benefit from well designed software tools that compensate for these problems to (1) explain the meaning of the results of a medical test in a way that is understandable and accurate, and (2) help to decide among treatment options that often have complex arrays of probabilistic outcomes.
描述(由申请人提供):有关医疗干预结果的准确统计数据往往令人困惑、不完整或患者无法获得。没有这样的信息,患者会感到沮丧,知情同意的精神也会受挫。即使有相关数据,也可能无法正确传达。例如,执业医生可能不会就测试结果的概率含义提供准确的建议。因此,医学检查的假阳性结果会导致不必要的焦虑,而假阴性会导致不必要的延误。此外,一些医生建议他们更喜欢的治疗方法,而不是承担耗时的努力,使患者成为知情的决策者。医生和医疗顾问自己经常对复杂的数字信息的含义感到困惑。风险沟通不力可能导致患者做出糟糕的选择。医生和他们的患者将受益于满足临床决策支持广泛领域中两个需求的软件工具:(1)帮助以易于理解和准确的方式解释医学测试结果的意义,以及(2)帮助在治疗方案中做出决定。相关信息通常根据结果频率或概率进行编码,但有两个严重的复杂问题。第一个问题是,由于样本量有限、随机测量误差和各种系统测量偏差,采样误差通常会导致数据存在不确定性。第二个复杂的问题是,人类受到一系列认知错觉的困扰,这些错觉混淆了他们对频率和概率信息的感知。我们提出的解决这两种软件需求的技术在两个主要方面与以前的尝试不同。首先,我们使用不精确概率理论中的稳健贝叶斯方法(也称为贝叶斯灵敏度分析)来显式地表示关于频率和概率的不确定性。这些方法使我们能够在面对不确定性时提出实用的建议。例如,当信息被添加到评估中以使其针对个人进行个性化时,如果子组的样本大小要小得多,则概率的不确定性可能会扩大。其次,我们利用心理测量学中的发现来补偿对频率和概率的感知中的认知错觉。虽然统计上的失误常常归因于心理偏见和误解,但我们相信,最近的研究令人信服,许多误解和沟通失败是由医疗统计数据的缺陷陈述造成的。临床和其他证据表明,数据格式强烈影响可解释性。我们的技术将弥补认知偏差,并以适当的方式传递风险,以便很容易理解它们的含义。
公共卫生相关性:关于检测结果和医疗干预结果的统计数据往往令人困惑,因为很难传达关于频率的不精确,以及对不确定性的多重认知错觉。医生和他们的患者将受益于精心设计的软件工具,这些工具可以弥补这些问题:(1)以一种易于理解和准确的方式解释医学测试结果的意义,以及(2)帮助在通常具有复杂概率结果数组的治疗方案中做出决定。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mathematical Foundations for a Theory of Confidence Structures.
置信结构理论的数学基础。
- DOI:10.1016/j.ijar.2012.05.006
- 发表时间:2012
- 期刊:
- 影响因子:0
- 作者:Balch,MichaelScott
- 通讯作者:Balch,MichaelScott
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SCOTT D FERSON其他文献
SCOTT D FERSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SCOTT D FERSON', 18)}}的其他基金
Balancing Disclosure Risk with Inferential Power: Software for Intervalized Data
平衡披露风险与推理能力:间隔数据软件
- 批准号:
8517848 - 财政年份:2012
- 资助金额:
$ 162.78万 - 项目类别:
Balancing Disclosure Risk with Inferential Power: Software for Intervalized Data
平衡披露风险与推理能力:间隔数据软件
- 批准号:
8251091 - 财政年份:2012
- 资助金额:
$ 162.78万 - 项目类别:
Safe environmental concentrations under uncertainty
不确定条件下的安全环境浓度
- 批准号:
6337570 - 财政年份:2001
- 资助金额:
$ 162.78万 - 项目类别:
Safe environment concentrations under uncertainty
不确定性下的安全环境浓度
- 批准号:
6788050 - 财政年份:2000
- 资助金额:
$ 162.78万 - 项目类别:
Safe environment concentrations under uncertainty
不确定性下的安全环境浓度
- 批准号:
6645820 - 财政年份:2000
- 资助金额:
$ 162.78万 - 项目类别:
CONSERVATIVE RISK ANALYSIS USING DEPENDENCY BOUNDS
使用依赖性界限的保守风险分析
- 批准号:
2018482 - 财政年份:1996
- 资助金额:
$ 162.78万 - 项目类别:
DETECTING DISEASE CLUSTERS IN STRUCTURED ENVIRONMENTS
检测结构化环境中的疾病群
- 批准号:
2187080 - 财政年份:1993
- 资助金额:
$ 162.78万 - 项目类别:
DETECTING DISEASE CLUSTERS IN STRUCTURED ENVIRONMENTS
检测结构化环境中的疾病群
- 批准号:
2430476 - 财政年份:1993
- 资助金额:
$ 162.78万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 162.78万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 162.78万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 162.78万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 162.78万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 162.78万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 162.78万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 162.78万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 162.78万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 162.78万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 162.78万 - 项目类别:
Research Grant