Inside-Out Tissue Engineering for Organ Fabrication
用于器官制造的由内而外的组织工程
基本信息
- 批准号:8073034
- 负责人:
- 金额:$ 34.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-06-01 至 2014-03-31
- 项目状态:已结题
- 来源:
- 关键词:Activities of Daily LivingAddressAgeAutologousBioreactorsBlood CirculationBlood VesselsBlood capillariesBone MarrowBone TissueBuild-itCartilageCellsComplexDiseaseEmbryonic DevelopmentEngineeringFoundationsFundingGenerationsGoalsGrantGrowthHeart DiseasesHourHumanHuman bodyImmunosuppressionImplantIn SituIn VitroLifeLiverLiver DysfunctionLiver diseasesLung diseasesMediatingMesenchymal Stem CellsMetabolicMethodologyMicrocirculatory BedModelingNational Institute of Biomedical Imaging and BioengineeringNatural regenerationNutrientOrganOrgan TransplantationOrgan failureOxygenPatientsPatternPeptidesPerfusionPhenotypePhysiologicalPopulationProblem SolvingRoleSeedsSourceStagingStem cellsSterilityStructureSystemTherapeuticTissue EngineeringTissuesTransplantationUnited StatesUnited States National Institutes of HealthVascular SystemVascularizationWaiting Listsarteriolebasebonecapillaryex vivo perfusionimplantationin vivonovelnovel strategiesprogenitorpublic health relevancescaffoldstem cell technologysuccesstechnique developmenttissue regenerationtransplantation medicinevascular bedvenule
项目摘要
DESCRIPTION (provided by applicant): Transplantation for organ failure is limited by the problems of organ scarcity and the need for lifelong immunosuppression. Tissue engineering holds the promise to create new organs outside the human body but has been hindered by 1.) the inability to adequately vascularize tissue constructs and 2.) the inability to efficiently re-integrate these tissues into the systemic circulation. Classical approaches to tissue engineering using cells seeded onto resorbable matrices have had success in replicating simple structures but have been unable to create complex parenchymal organs because of the difficulty in creating patterned vascular networks. To solve this problem, we have developed a novel approach to engineer constructs of organ-level complexity by using pre-existing, explanted microcirculatory beds as the scaffold for tissue engineering. Since this approach starts with the vascular network as a foundation, it builds autologous tissue from the "inside-out," in a manner similar to embryonic development or stem cell mediated tissue regeneration. During our previous NIH funding period, we demonstrated an ability to sustain explanted vascular beds for extended periods ex vivo (48-72hrs), genetically modify their growth milieu, and efficiently seed them with progenitor cells creating functional neo-organ units for re-implantation. Based on this success, we postulate that more prolonged cultivation of explanted microcirculatory beds will permit generation of autologous vascularized neo-organs which can reliably substitute a functional or physiologic role for a failing organ. In this proposal, Specific Aim 1 will define the perfusion conditions necessary for reliable viability, growth, and directed manipulation of explanted microcirculatory beds for 3-14 days ex vivo. In Specific Aim 2, the optimal seeding and differentiation conditions of infused progenitor cells to generate vascularized neo-organs will be determined. Finally, Specific Aim 3 will investigate the durability and functional capacity of re-implanted vascularized neo-organ units to fulfill a physiologic role in vivo. We believe this "inside-out" approach to tissue engineering will facilitate the generation of vascularized organ-level constructs by specifically addressing the critical issues that preclude success in other tissue engineering paradigms.
PUBLIC HEALTH RELEVANCE: Tissue engineering holds the promise to create new organs but progress has been limited by poor vascularization of tissue constructs and ineffective re-integration of these tissues into the systemic circulation. To address this problem, we have developed a novel approach to engineer organ-level constructs by using pre-existing, explanted microcirculatory beds as an autologous scaffold for tissue regeneration. Our initial results demonstrate that viable microcirculatory beds can be maintained ex vivo, seeded with progenitor cells, and transfected to produce therapeutic peptides - all critical initial steps toward generating vascularized organ- level constructs.
描述(由申请人提供):器官衰竭的移植受到器官稀缺和需要终身免疫抑制的问题的限制。组织工程有望在人体外创造新的器官,但受到以下因素的阻碍:不能使组织构建物充分血管化,和2.)不能有效地将这些组织重新整合到体循环中。使用接种到可吸收基质上的细胞进行组织工程的经典方法在复制简单结构方面取得了成功,但由于难以形成图案化的血管网络而无法形成复杂的实质器官。为了解决这个问题,我们已经开发了一种新的方法,通过使用预先存在的微循环床作为组织工程的支架来设计器官水平复杂性的结构。由于这种方法以血管网络为基础开始,它以类似于胚胎发育或干细胞介导的组织再生的方式从“由内而外”构建自体组织。在我们之前的NIH资助期间,我们证明了在体外维持长时间(48- 72小时)的血管床,遗传修饰其生长环境,并有效地用祖细胞接种它们,创造功能性新器官单位用于重新植入的能力。基于这一成功,我们假设,更长时间的培养的微循环床将允许生成自体血管化的新器官,可以可靠地替代功能或生理作用的衰竭器官。在本提案中,具体目标1将定义离体3-14天的可靠存活力、生长和定向操作微循环床所需的灌注条件。在特定目标2中,将确定输注祖细胞以产生血管化新器官的最佳接种和分化条件。最后,具体目标3将研究重新植入的血管化新器官单位的耐久性和功能能力,以实现体内生理作用。我们相信这种“由内而外”的组织工程方法将有助于血管化的器官水平的结构,特别是解决关键问题,排除在其他组织工程范例的成功。
公共卫生相关性:组织工程有望创造新的器官,但进展受到组织结构血管化不良和这些组织无效重新整合到体循环中的限制。为了解决这个问题,我们已经开发了一种新的方法,通过使用预先存在的微循环床作为组织再生的自体支架来设计器官水平的构建体。我们的初步结果表明,可行的微循环床可以保持离体,与祖细胞接种,并转染,以产生治疗肽-所有关键的初始步骤产生血管化的器官水平的建设。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GEOFFREY C GURTNER其他文献
GEOFFREY C GURTNER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GEOFFREY C GURTNER', 18)}}的其他基金
TARGETING HIF-1α DYSFUNCTION TO TREAT PRESSURE ULCERS IN THE AGED
针对 HIF-1α 功能障碍治疗老年人压疮
- 批准号:
10685482 - 财政年份:2022
- 资助金额:
$ 34.65万 - 项目类别:
TARGETING HIF-1α DYSFUNCTION TO TREAT PRESSURE ULCERS IN THE AGED
针对 HIF-1α 功能障碍治疗老年人压疮
- 批准号:
10444745 - 财政年份:2022
- 资助金额:
$ 34.65万 - 项目类别:
Diabetic Foot Ulcer Biofilm Infection and Recurrence
糖尿病足溃疡生物膜感染和复发
- 批准号:
10947670 - 财政年份:2020
- 资助金额:
$ 34.65万 - 项目类别:
Diabetic Foot Ulcer Biofilm Infection and Recurrence
糖尿病足溃疡生物膜感染和复发
- 批准号:
10417228 - 财政年份:2020
- 资助金额:
$ 34.65万 - 项目类别:
Diabetic Foot Ulcer Biofilm Infection and Recurrence
糖尿病足溃疡生物膜感染和复发
- 批准号:
10256045 - 财政年份:2020
- 资助金额:
$ 34.65万 - 项目类别:
Diabetic Foot Ulcer Biofilm Infection and Recurrence
糖尿病足溃疡生物膜感染和复发
- 批准号:
10044343 - 财政年份:2020
- 资助金额:
$ 34.65万 - 项目类别:
Diabetic Foot Ulcer Biofilm Infection and Recurrence
糖尿病足溃疡生物膜感染和复发
- 批准号:
10376509 - 财政年份:2020
- 资助金额:
$ 34.65万 - 项目类别:
Stanford Advanced Wound Care Center Clinical Research Unit
斯坦福高级伤口护理中心临床研究部
- 批准号:
10203948 - 财政年份:2018
- 资助金额:
$ 34.65万 - 项目类别:
Stanford Advanced Wound Care Center Clinical Research Unit
斯坦福高级伤口护理中心临床研究部
- 批准号:
10230438 - 财政年份:2018
- 资助金额:
$ 34.65万 - 项目类别:
Stanford Advanced Wound Care Center Clinical Research Unit
斯坦福高级伤口护理中心临床研究部
- 批准号:
10377776 - 财政年份:2018
- 资助金额:
$ 34.65万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 34.65万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 34.65万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 34.65万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 34.65万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 34.65万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 34.65万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 34.65万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 34.65万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 34.65万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 34.65万 - 项目类别:
Research Grant