Laser Capture For Macromolecular Analysis Of Normal Development And Pathology
激光捕获用于正常发育和病理学的大分子分析
基本信息
- 批准号:8149233
- 负责人:
- 金额:$ 18.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Integrative molecular biology requires understanding interactions of large numbers of pathways. Similarly, molecular medicine increasingly relies on complex macromolecular diagnostics to guide therapeutic choices. A fundamental argument for laser capture microdissection (LCM) of tissues is that without separation of specific cell populations from complex tissues, we will miss critical control functions of thousands of regulated transcription factors, cell regulators, and receptors that are expressed at low copy number. Without detecting changes in many of these critical effectors, the integrative understanding of tissue function and pathology will not proceed effectively. In complex tissues - particularly among pathological variations - it is exceptionally difficult to measure the majority of molecules that are at low copy number per cell without first isolating specific cell populations. For example, in a recent collaboration with the NEI, we adapted LCM method to isolate localized (3D) cells at the site of retinal topoglogical closure and performed microarray analysis of gene expression at 8 time points of embryonic development. This enabled us to identify low copy number transcriptions factors that when blocked lead to loss of closure in animal models. These transcription factors and approximately 200 other temporally and spatially covarying genes appear likely to play a role in coloboma, an inborn developmental defect of the retina occurring in humans. We are developing novel mathematical approaches capable of more comprehensively identifying within such datasets the specific networks of genes that drive such local tissue development.
The LCM techniques that we started developing fourteen years ago are now widely used in molecular analysis of genetics and gene expression changes within target cells within complex tissues. However, in global proteomic and lipid studies without molecular amplification methods, the quantity of isolated cells sufficient to perform accurate characterization of less abundant species is problematic as the microscopic visualization, targeting, and isolation in laser microdissection has a maximal rate of about 1 to 20 cells per second depending on their microscopic distribution within the tissues. Recently, in collaboration with NCI and CIT, we invented and are now refining an automatic target-directed microtransfer technique based on macromolecule-specific staining of cells not requiring user visualization or microscopic targeting and capable of much higher throughput rates. This technique (patent pending) is built on our physical understanding of thermoplastic microtransfer and uses a much simpler device and transfer films than commercial laser microdissection instruments. This rapid, automated microtransfer method has improved spatial resolution (1 micron) and is consequently particularly well-suited to isolate highly dispersed, specific cell populations (e.g., specific neurons in the brain) or specific organelles (e.g., neuronal nuclei in the brain). The spatial relationships (morphology) among the specific cells in the tissue are preserved on the transfer film. In collaboration with Drs Markey, Lippincott-Schwartz, and Morgan under an NIH Directors Challenge Award, we are applying our technology to proteomics studies of subcellular organelles. As this technology becomes more robust, we will seek to integrate the microtransfer with molecular profiling of specific organelles or isolated cells within tissues, including routine proteomic and lipidomic analyses, particularly greater sensitivity to molecular species less abundant in grosser tissue samples.
If microdissection and molecular analysis can be made clinically practical, the expression levels of sets of approximately 20 to 100 critical, stage-specific disease markers within a selected cell population might provide reliable diagnosis and intermediate endpoints of response to molecular therapies in individual patients. Our analysis of large gene expression and protein databases suggests that a significant fraction of all genes is expressed in any specific cell type and that the levels of gene products universally exhibit a highly skewed power-law distribution similar to those characterizing many other complex systems. We have developed mathematical models for the evolution of such distributions that predict the observed distributions of genes, protein domains, and gene expression observed in species of increasing biological complexity. In normal human physiology, homeostasis arises from a highly robust interacting network of large number of gene products in specific cell phenotypes that interact directly through direct and hormonal interactions with many other cellular phenotypes. We foresee an evolution of molecular diagnosis from one based on the qualitative or quantitative analysis of a few key biomarker macromolecules to one in which special clustering algorithms analyze complex multivariate databases. Such analyses should permit a more complete identification of highly correlated clinical cases and allow us to characterize their response to molecular therapies specifically designed to prevent progression.
We are attempting to develop new approaches for better integration of our thermoplastic microtransfer methods of microdissection with downstream macromolecular analysis to permit more routine and simpler multiplex molecular diagnostics. A key feature is using the polymer matrix in which target cells are embedded for affinity purification and then for direct optical detection within the transparent polymer. Using a variety of microscopy techniques in our lab, we seek to quantitatively characterize protocols for incorporating affinity nanoparticles in the tissue and polymer matrix. In the longer term, we foresee using in situ optical labels to quantify the spatial distributions of specific molecules captured within the microtransfer and retained following simpler purification steps. Coupling the robust and simple automatic microdissection with rapid purification and detection of species might provide unique abilities to follow macromolecular changes in normal tissue development and in human pathologies. We are working on integrating the statistics of expression levels spatially and temporally correlated within specific cell populations with pathway and transcription factor databases to provide a more integrated approach to molecular physiology. With future integration of microdissection and macromolecular analysis, we believe the critical role for many less abundantly expressed genes in determining normal function and pathological changes will be more easily studied and integrated into molecular diagnostics and selection of clinical therapies.
综合分子生物学需要了解大量途径的相互作用。同样,分子医学越来越依赖于复杂的大分子诊断来指导治疗选择。组织激光捕获显微解剖(LCM)的一个基本论点是,如果没有从复杂组织中分离特定的细胞群,我们将错过数千种低拷贝数表达的受调节转录因子、细胞调节剂和受体的关键控制功能。如果没有检测到这些关键效应物的变化,对组织功能和病理的综合理解将无法有效地进行。在复杂的组织中,特别是在病理变异中,如果不首先分离特定的细胞群,就很难测量每个细胞拷贝数低的大多数分子。例如,在最近与NEI的合作中,我们采用LCM方法分离视网膜拓扑闭合部位的局部(3D)细胞,并在胚胎发育的8个时间点对基因表达进行微阵列分析。这使我们能够在动物模型中识别低拷贝数转录因子,当这些转录因子被阻断时会导致关闭的丧失。这些转录因子和大约200个其他在时间和空间上共变的基因似乎可能在先天性视网膜缺损中起作用,这是一种发生在人类视网膜上的先天性发育缺陷。我们正在开发新的数学方法,能够在这些数据集中更全面地识别驱动这种局部组织发育的特定基因网络。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert F Bonner其他文献
Cardiac pacing by shock waves during pulsed laser angioplasty
- DOI:
10.1016/0735-1097(90)91941-m - 发表时间:
1990-02-01 - 期刊:
- 影响因子:
- 作者:
Robert F Bonner;Antonio Bartorelli;Yaron Almagor;Gad Keren;Ernst Hansch;Martin B Leon - 通讯作者:
Martin B Leon
Robert F Bonner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert F Bonner', 18)}}的其他基金
LASER CAPTURE FOR MACROMOLECULAR ANALYSIS OF NORMAL DEVELOPMENT AND PATHOLOGY
用于正常发育和病理学大分子分析的激光捕获
- 批准号:
6290168 - 财政年份:
- 资助金额:
$ 18.56万 - 项目类别:
Temporal-Spectral Control of Artificail Lighting for Improved Health
人工照明的时域光谱控制以改善健康
- 批准号:
8351258 - 财政年份:
- 资助金额:
$ 18.56万 - 项目类别:
Photoprotection of chronic macular photochemical injury
慢性黄斑光化学损伤的光保护
- 批准号:
7212381 - 财政年份:
- 资助金额:
$ 18.56万 - 项目类别:
Temporal-Spectral Control of Artificail Lighting for Improved Health
人工照明的时域光谱控制以改善健康
- 批准号:
8553986 - 财政年份:
- 资助金额:
$ 18.56万 - 项目类别:
Laser Capture For Macromolecular Analysis Of Normal Development And Pathology
激光捕获用于正常发育和病理学的大分子分析
- 批准号:
8351097 - 财政年份:
- 资助金额:
$ 18.56万 - 项目类别:
Laser Capture For Macromolecular Analysis Of Development
激光捕获用于大分子分析的开发
- 批准号:
7201693 - 财政年份:
- 资助金额:
$ 18.56万 - 项目类别:
Laser Capture For Macromolecular Analysis Of Normal Development And Pathology
激光捕获用于正常发育和病理学的大分子分析
- 批准号:
8941426 - 财政年份:
- 资助金额:
$ 18.56万 - 项目类别:
Laser Capture for Macromolecular Analysis of Normal Development and Pathology
用于正常发育和病理学大分子分析的激光捕获
- 批准号:
6107992 - 财政年份:
- 资助金额:
$ 18.56万 - 项目类别:
Spectral photoprotection of chronic macular photochemica
慢性黄斑光化学的光谱光保护
- 批准号:
7334142 - 财政年份:
- 资助金额:
$ 18.56万 - 项目类别:
Spectral photoprotection of chronic macular photochemical injury
慢性黄斑光化学损伤的光谱光保护
- 批准号:
7594233 - 财政年份:
- 资助金额:
$ 18.56万 - 项目类别:
相似海外基金
CAREER: Integrated Lithium Niobate Femtosecond Mode-Locked Lasers and Ultrafast Photonic Systems
职业:集成铌酸锂飞秒锁模激光器和超快光子系统
- 批准号:
2338798 - 财政年份:2024
- 资助金额:
$ 18.56万 - 项目类别:
Continuing Grant
Tuneable short-wavelength infrared mode-locked fibre lasers
可调谐短波长红外锁模光纤激光器
- 批准号:
EP/Y001915/1 - 财政年份:2024
- 资助金额:
$ 18.56万 - 项目类别:
Research Grant
MEMS-metasurface Based Tunable Optical Vortex Lasers for smart free-space communication
用于智能自由空间通信的基于 MEMS 超表面的可调谐光学涡旋激光器
- 批准号:
EP/X034542/2 - 财政年份:2024
- 资助金额:
$ 18.56万 - 项目类别:
Research Grant
Investigating spatio-temporal instabilities in next-generation lasers
研究下一代激光器的时空不稳定性
- 批准号:
FT230100388 - 财政年份:2024
- 资助金额:
$ 18.56万 - 项目类别:
ARC Future Fellowships
RII Track-4: NSF: Development of Semiconductor Lasers and Passive Devices on a Single Sapphire Platform for Integrated Microwave Photonics
RII Track-4:NSF:在单个蓝宝石平台上开发用于集成微波光子学的半导体激光器和无源器件
- 批准号:
2327229 - 财政年份:2024
- 资助金额:
$ 18.56万 - 项目类别:
Standard Grant
Lasers for quantum-enabled position, navigation, and timing technologies
用于量子定位、导航和授时技术的激光器
- 批准号:
2902868 - 财政年份:2024
- 资助金额:
$ 18.56万 - 项目类别:
Studentship
Infra-Plas: Colloidal Quantum Dots for Short-Wave Infrared Plasmonic Lasers
Infra-Plas:用于短波红外等离子激光器的胶体量子点
- 批准号:
EP/Z000912/1 - 财政年份:2024
- 资助金额:
$ 18.56万 - 项目类别:
Fellowship
Integrated Solid-State Steerable Lasers (I-STEER)
集成固态可控激光器 (I-STEER)
- 批准号:
EP/X032868/1 - 财政年份:2024
- 资助金额:
$ 18.56万 - 项目类别:
Research Grant
Integrated Solid-State Steerable Lasers (I-STEER)
集成固态可控激光器 (I-STEER)
- 批准号:
EP/X03299X/1 - 财政年份:2024
- 资助金额:
$ 18.56万 - 项目类别:
Research Grant
Lasers for Accelerated Net-Zero Transition-Lasers4NetZero
用于加速净零过渡的激光器-Lasers4NetZero
- 批准号:
EP/Y030591/1 - 财政年份:2024
- 资助金额:
$ 18.56万 - 项目类别:
Research Grant