Temporal-Spectral Control of Artificail Lighting for Improved Health

人工照明的时域光谱控制以改善健康

基本信息

项目摘要

Current research indicates that daily patterns of light exposures, through the melanopsin-containing retinal ganglion cell (mc-RGC) pathway, has a profound effect on both acute brain function and daily entrainment of circadian physiology. Our night-time exposures to artificial lighting are disruptive of circadian physiology as shown in controlled sleep studies and studies on shift-workers, particularly irregular shift work. Disruption of circadian physiology acutely affects alertness and cognitive function. Chronic circadian disruption has been linked to increased incidence of cancer, metabolic syndrome, and a wide spectrum of neuro-psychiatric dysfunction. Modern life is increasingly characterized by long periods of indoor activity during both day and night for which the same conventional lighting standards are applied. These standards are based on color vision sensitivity regardless of mc-rgc pathway activation. This creates greater likelihood that individuals spending most of the daylight hours indoors and extensively viewing computers and televisions at night may fragment their normal diurnal pattern of spectral irradiance. This way lead to widespread circadian disruption and chronic physiological stresses. Consequently, one might improve both health and productivity of our modern populace by temporally altering the artificial light spectrum to increase mc-rgc activation (blue-light enrichment) during the daytime and decreasing it at night (diminished blue component). We have been searching for simple ways to test this hypothesis and to provide practical means for individual optimization given the wide range of real-world ambient light exposure patterns. Fluorescent lighting and more recently LED lighting are capable of greatly enriching the blue spectrum by increasing the amount of primary blue light transmitted through the phosphors that create the output white light. For example, recent studies suggest that daytime exposure to bright high-color-temperature (blue-enriched) fluorescent lights in daytime common rooms of patients with dementia led to decreased rate of long-term decline in cognitive function. Any standard light that increases daytime melanopsin activation will also lead to disruption when used at night. For the general population, we believe circadian disruption from such blue-light rich artificial lights at night is a major problem. To optimize circadian health in the modern urban world, we hypothesize will require temporal control of the artificial light spectrum. Computer monitors (and televisions) are universally designed to exceed ambient light levels reaching the retina (hence dominate mc-rgc pathway activation when used. In our modern society, large segments of the population average 4 hours of computer use per day. Similarly televisions are on typically up to 8 hours in an average American household. These high brightness sources on which we routinely fixate for long periods are the most likely light to be altering natural patterns of activation of melanopsin-containing retinal ganglion cells and their projections to the brain. However, modern computer monitors and digital televisions provide a path to dynamically control mc-rgc activation relative to color vision sensitivity by altering the RGB gain structure. We have developed dynamic color balance software that can control the color balance over a diurnal cycle to vary mc-rgc activation 10 fold while keeping photopic sensitivity constant. Our hypothesis is that daily computer use is having a measurable effect on circadian physiology. By using dynamic control of the RGB balance with easily exported software, we hope to develop computer based real-world testbeds to measure such acute effects on alertness and cognitive function throughout the day. Using the diurnal records of performance for a given individuals might eventually be use to self-optimize the temporal pattern of artificial light spectra for a given individual which is affected by both their other daily environmental zeitgebers and likely the genetic variations in their circadian systems physiology. We are currently trying to integrate our spectral-temporal control of LED/LCD computer monitors and smartphones with computerized attention, response time, cognitive function and productivity tests. We would use the subjects epersonal computer to log these data results along with those from computer-based questionnaires presented at regular intervals. With this combined testbed, we plan to design new research into lighting spectral-temporal control optimization for health in real-world systems readily exportable to office and home environments. We are considering the potential for such systems to perform anonymized studies (subject selected username and password) to provide low cost large cohort studies that provide the potential for individual feedback to reinforce behaviors that improve circadian health and performance. In collaboration with the Lighting Division of Lawrence Berkeley National Lab and the California Lighting Research Center under a DOE FLEMP grant, we have developed programmable low-level temporal and spectral control of computer monitor luminance that is compatible with the normal function of other computer programs both for cognitive function testing and for normal computer uses at work and at home.
目前的研究表明,通过含有黑素的视网膜神经节细胞(MC-RGC)途径的日常光照模式对急性脑功能和昼夜生理的日常携带都有深远的影响。我们夜间暴露在人工照明下会扰乱昼夜生理,这一点在受控睡眠研究和对轮班工人的研究中得到了证明,尤其是不规律的轮班工作。昼夜生理紊乱会严重影响警觉性和认知功能。慢性昼夜节律紊乱与癌症、代谢综合征和广泛的神经精神功能障碍的发病率增加有关。现代生活的特点是白天和晚上的室内活动时间都很长,采用相同的常规照明标准。这些标准基于色觉敏感度,而不考虑MC-RGC通路的激活。这就产生了更大的可能性,即白天大部分时间呆在室内,晚上大量观看电脑和电视的人,可能会破坏他们正常的白天光谱辐射模式。这种方式会导致大范围的昼夜节律紊乱和慢性生理压力。因此,人们可以通过暂时改变人造光谱来增加白天MC-RGC的激活(蓝光丰富)和晚上减少MC-RGC的激活(减少蓝色成分),从而改善我们现代人群的健康和生产力。我们一直在寻找简单的方法来检验这一假设,并在现实世界中广泛的环境光暴露模式下为个体优化提供实用的手段。荧光灯和最近的LED照明能够通过增加透过产生输出白光的荧光粉的原色蓝光的量来极大地丰富蓝色光谱。例如,最近的研究表明,痴呆症患者白天在公共休息室暴露于明亮的高色温(蓝光)荧光灯会导致认知功能长期下降的比率降低。任何增加白天黑色素激活的标准光在晚上使用时也会导致干扰。对于普通人群,我们认为夜间这种富含蓝光的人造灯光对昼夜节律的干扰是一个主要问题。为了在现代城市世界中优化昼夜节律健康,我们假设将需要对人造光谱进行时间控制。 电脑显示器(和电视机)的设计普遍是为了超过到达视网膜的环境光线水平(因此在使用时主导MC-RGC通路的激活)。在我们的现代社会中,很大一部分人平均每天使用电脑4小时。同样,在普通美国家庭中,电视通常长达8小时。这些我们经常长时间注视的高亮度光源,是最有可能改变含有黑素的视网膜神经节细胞激活的自然模式及其向大脑投射的光。然而,现代计算机监视器和数字电视提供了通过改变RGB增益结构来相对于色觉灵敏度动态控制MC-RGC激活的途径。我们开发了动态色彩平衡软件,可以在一天的周期内控制色彩平衡,将MC-RGC的激活改变10倍,同时保持明视敏感度恒定。我们的假设是,日常使用电脑对昼夜生理学产生了可测量的影响。通过使用易于输出的软件对RGB平衡进行动态控制,我们希望开发基于计算机的真实世界试验台,以测量全天对警觉性和认知功能的这种急性影响。利用给定个体的每日表现记录,最终可能被用来自我优化给定个体的人工光谱的时间模式,这既受他们日常环境的影响,也可能受到他们昼夜节律系统生理中的遗传变异的影响。 我们目前正试图将我们对LED/LCD计算机显示器和智能手机的光谱-时间控制与计算机化的注意力、反应时间、认知功能和生产力测试相结合。我们将使用受试者的电子个人计算机来记录这些数据结果,以及定期提交的基于计算机的调查问卷的结果。通过这一组合试验台,我们计划设计一项新的研究,在可随时输出到办公室和家庭环境的真实世界系统中,优化照明光谱-时间控制,以实现健康。我们正在考虑这样的系统进行匿名研究(受试者选择的用户名和密码)的可能性,以提供低成本的大型队列研究,提供个人反馈的潜力,以加强改善昼夜健康和性能的行为。 在美国能源部FLEMP的资助下,我们与劳伦斯伯克利国家实验室的照明部门和加州照明研究中心合作,开发了计算机监视器亮度的可编程低水平时间和光谱控制,该控制与其他计算机程序的正常功能兼容,用于认知功能测试和工作和家庭中的正常计算机使用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert F Bonner其他文献

Cardiac pacing by shock waves during pulsed laser angioplasty
  • DOI:
    10.1016/0735-1097(90)91941-m
  • 发表时间:
    1990-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Robert F Bonner;Antonio Bartorelli;Yaron Almagor;Gad Keren;Ernst Hansch;Martin B Leon
  • 通讯作者:
    Martin B Leon

Robert F Bonner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert F Bonner', 18)}}的其他基金

LASER CAPTURE FOR MACROMOLECULAR ANALYSIS OF NORMAL DEVELOPMENT AND PATHOLOGY
用于正常发育和病理学大分子分析的激光捕获
  • 批准号:
    6290168
  • 财政年份:
  • 资助金额:
    $ 2.47万
  • 项目类别:
Temporal-Spectral Control of Artificail Lighting for Improved Health
人工照明的时域光谱控制以改善健康
  • 批准号:
    8351258
  • 财政年份:
  • 资助金额:
    $ 2.47万
  • 项目类别:
Photoprotection of chronic macular photochemical injury
慢性黄斑光化学损伤的光保护
  • 批准号:
    7212381
  • 财政年份:
  • 资助金额:
    $ 2.47万
  • 项目类别:
Laser Capture For Macromolecular Analysis Of Normal Development And Pathology
激光捕获用于正常发育和病理学的大分子分析
  • 批准号:
    8149233
  • 财政年份:
  • 资助金额:
    $ 2.47万
  • 项目类别:
Laser Capture For Macromolecular Analysis Of Normal Development And Pathology
激光捕获用于正常发育和病理学的大分子分析
  • 批准号:
    8351097
  • 财政年份:
  • 资助金额:
    $ 2.47万
  • 项目类别:
Laser Capture For Macromolecular Analysis Of Development
激光捕获用于大分子分析的开发
  • 批准号:
    7201693
  • 财政年份:
  • 资助金额:
    $ 2.47万
  • 项目类别:
Laser Capture For Macromolecular Analysis Of Normal Development And Pathology
激光捕获用于正常发育和病理学的大分子分析
  • 批准号:
    8941426
  • 财政年份:
  • 资助金额:
    $ 2.47万
  • 项目类别:
Laser Capture for Macromolecular Analysis of Normal Development and Pathology
用于正常发育和病理学大分子分析的激光捕获
  • 批准号:
    6107992
  • 财政年份:
  • 资助金额:
    $ 2.47万
  • 项目类别:
Spectral photoprotection of chronic macular photochemica
慢性黄斑光化学的光谱光保护
  • 批准号:
    7334142
  • 财政年份:
  • 资助金额:
    $ 2.47万
  • 项目类别:
Spectral photoprotection of chronic macular photochemical injury
慢性黄斑光化学损伤的光谱光保护
  • 批准号:
    7594233
  • 财政年份:
  • 资助金额:
    $ 2.47万
  • 项目类别:

相似海外基金

How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.47万
  • 项目类别:
    Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 2.47万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 2.47万
  • 项目类别:
    Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.47万
  • 项目类别:
    Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 2.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.47万
  • 项目类别:
    Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 2.47万
  • 项目类别:
    Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 2.47万
  • 项目类别:
    Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
  • 批准号:
    23K00129
  • 财政年份:
    2023
  • 资助金额:
    $ 2.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
  • 批准号:
    2883985
  • 财政年份:
    2023
  • 资助金额:
    $ 2.47万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了