Low-Cost Electronic Nose for Groundwater Contaminants

用于地下水污染物检测的低成本电子鼻

基本信息

  • 批准号:
    8059710
  • 负责人:
  • 金额:
    $ 53.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-01 至 2013-04-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Several US agencies and regulators require low-cost chemical sensors for detecting and monitoring environmental clean-up, remediation, and decommissioning processes where groundwater may be contaminated. The sensors must be capable of detecting contaminants in the sub-surface groundwater and must be compatible with use in a range of environments. Most significantly, these customers require a low-cost alternative to its current expensive and labor intensive methods, namely using mobile laboratories. The project will result in the innovative use of low-cost sensor systems that will be capable of detecting and monitoring for dense non-aqueous phase liquids in the subsurface and groundwater, unattended, and in real- time from within a push-probe, using a chemicapacitor array and miniature preconcentrator. The ultimate goal of this SBIR project is to provide the DOD, DOE, and other agencies with a method to map and track subsurface contamination plumes in real-time without requiring an operator. In Phase I, Seacoast successfully demonstrated the feasibility of using a microsensor array with a proprietary trap-and- purge preconcentrator to detect chlorinated solvents, specifically TCE, and TCA, at levels low enough to meet EPA mandated levels for drinking water. In Phase II Seacoast proposes to improve the selectivity and sensitivity of the system to better meet the needs identified by the Phase I consultant. The systems have MEMS microcapacitor sensor arrays that can monitor for leaks of toxic chemicals, contaminants from wastes, and changes in groundwater streams. A preconcentrator traps the contaminants and releases them to a microsensor array. These sensor arrays are filled with several chemoselective polymers whose dielectric permittivity changes when exposed to different vapors, creating a fingerprint response for each chemical. In Phase II Seacoast will specifically develop new materials to improve the sensor array selectivity, 1) by using impedance spectroscopy to study the mechanisms by which the polymer-based sensors sorb the target chemicals, 2) by implementing pattern recognition algorithms to identify chemicals for the sensor responses, and 3) by designing new preconcentrator materials that can bind these chemicals more strongly. The most important application to public health and safety is unattended monitoring of drinking water, water treatment processes, and water sources. Potential markets include building chemical process monitoring and control, toxic vapor leak detection, industrial process control, and industrial health and safety. Transitioning the developed prototype to other markets where worker and public health, environmental health and regulatory compliance will be investigated to reduce the financial risks and broaden the acceptance of the technology. PUBLIC HEALTH RELEVANCE: This proposal describes a novel technology that specifically addresses the need for detecting groundwater contaminants and long-term monitoring of contaminated sites, by providing an unattended sensor system that tracks contamination in real-time and transmits contaminant concentrations. Such a system would be used in tandem with other methods, to provide comprehensive contamination management at DOE, DOD, and Superfund sites where ground and water clean-up projects are already underway. The proposed work will focus on detection of chlorinated hydrocarbons, which are described as among the most common pollutants in groundwater and soils at DOE sites.
描述(由申请人提供):几个美国机构和监管机构需要低成本的化学传感器,用于检测和监测地下水可能受到污染的环境清理,修复和退役过程。传感器必须能够检测地下水中的污染物,并且必须与一系列环境中的使用兼容。最重要的是,这些客户需要一种低成本的替代方案,以取代目前昂贵的劳动密集型方法,即使用移动的实验室。该项目将导致低成本传感器系统的创新使用,该系统将能够使用化学电容器阵列和微型预浓缩器,在无人值守的情况下,从推式探头内真实的实时检测和监测地下和地下水中的稠密非水相液体。 SBIR项目的最终目标是为国防部、能源部和其他机构提供一种方法,在不需要操作员的情况下实时绘制和跟踪地下污染羽流。在第一阶段,Seacoast成功地证明了使用带有专有捕集和吹扫预浓缩器的微传感器阵列检测氯化溶剂的可行性,特别是三氯乙烯和三氯乙酸,其水平低到足以满足EPA规定的饮用水水平。在第二阶段,Seacoast建议提高系统的选择性和灵敏度,以更好地满足第一阶段顾问确定的需求。该系统具有MEMS微电容传感器阵列,可以监测有毒化学品的泄漏,废物中的污染物以及地下水流的变化。预浓缩器捕获污染物并将其释放到微传感器阵列。这些传感器阵列充满了几种化学选择性聚合物,当暴露于不同的蒸汽时,其介电常数会发生变化,从而为每种化学物质产生指纹响应。 在第二阶段,Seacoast将专门开发新材料来提高传感器阵列的选择性,1)通过使用阻抗谱来研究基于聚合物的传感器吸附目标化学品的机制,2)通过实施模式识别算法来识别传感器响应的化学品,以及3)通过设计可以更强地结合这些化学品的新预浓缩器材料。 对公共卫生和安全最重要的应用是无人值守的饮用水、水处理过程和水源监测。潜在的市场包括建筑化学过程监测和控制、有毒蒸汽泄漏检测、工业过程控制以及工业健康和安全。将开发的原型转移到其他市场,在那里将调查工人和公共卫生,环境卫生和监管合规性,以降低财务风险并扩大技术的接受度。 公共卫生相关性:该提案描述了一种新的技术,该技术通过提供无人值守的传感器系统来实时跟踪污染并传输污染物浓度,从而专门解决了检测地下水污染物和长期监测污染场地的需求。这样的系统将与其他方法结合使用,为能源部、国防部和超级基金所在地提供全面的污染管理,这些地方的地面和水清理项目已经在进行中。拟议的工作将侧重于检测氯化碳氢化合物,氯化碳氢化合物被描述为指定经营实体所在地地下水和土壤中最常见的污染物之一。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sanjay V Patel其他文献

Sanjay V Patel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sanjay V Patel', 18)}}的其他基金

Auto-calibrating, Air Quality Monitoring System
自动校准空气质量监测系统
  • 批准号:
    10686599
  • 财政年份:
    2023
  • 资助金额:
    $ 53.21万
  • 项目类别:
Smart Respirators - Embedded detectors for real-time monitoring of end-of-service-life in respirator filter cartridges
智能呼吸器 - 嵌入式探测器,用于实时监控呼吸器滤芯的使用寿命终止
  • 批准号:
    10474700
  • 财政年份:
    2021
  • 资助金额:
    $ 53.21万
  • 项目类别:
Detection of perfuorooctanoic acid (PFOA) and perfluorooctane sulfonate(PFOS) in liquid samples.
检测液体样品中的全氟辛酸 (PFOA) 和全氟辛烷磺酸 (PFOS)。
  • 批准号:
    10010066
  • 财政年份:
    2020
  • 资助金额:
    $ 53.21万
  • 项目类别:
Smart Respirators - Embedded detectors for real-time monitoring of end-of-service-life in respirator filter cartridges
智能呼吸器 - 嵌入式探测器,用于实时监控呼吸器滤芯的使用寿命终止
  • 批准号:
    9906500
  • 财政年份:
    2019
  • 资助金额:
    $ 53.21万
  • 项目类别:
Flexible, Graphene-based Detector Arrays for Petrochemical Exposure Monitoring
用于石化暴露监测的灵活石墨烯探测器阵列
  • 批准号:
    9045148
  • 财政年份:
    2016
  • 资助金额:
    $ 53.21万
  • 项目类别:
Unattended Vapor Intrusion Monitor
无人值守蒸汽入侵监测仪
  • 批准号:
    8313381
  • 财政年份:
    2012
  • 资助金额:
    $ 53.21万
  • 项目类别:
Corneal Endothelial Cell Transplantation
角膜内皮细胞移植
  • 批准号:
    7905735
  • 财政年份:
    2009
  • 资助金额:
    $ 53.21万
  • 项目类别:
Low-Cost Electronic Nose for Groundwater Contaminants
用于地下水污染物检测的低成本电子鼻
  • 批准号:
    7847964
  • 财政年份:
    2009
  • 资助金额:
    $ 53.21万
  • 项目类别:
Corneal Endothelial Cell Transplantation
角膜内皮细胞移植
  • 批准号:
    7568658
  • 财政年份:
    2009
  • 资助金额:
    $ 53.21万
  • 项目类别:
Low-Cost Electronic Nose for Groundwater Contaminants
用于地下水污染物检测的低成本电子鼻
  • 批准号:
    8260510
  • 财政年份:
    2008
  • 资助金额:
    $ 53.21万
  • 项目类别:

相似海外基金

Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
  • 批准号:
    LP170100311
  • 财政年份:
    2018
  • 资助金额:
    $ 53.21万
  • 项目类别:
    Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
  • 批准号:
    1736326
  • 财政年份:
    2017
  • 资助金额:
    $ 53.21万
  • 项目类别:
    Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 53.21万
  • 项目类别:
    Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
  • 批准号:
    375876714
  • 财政年份:
    2017
  • 资助金额:
    $ 53.21万
  • 项目类别:
    Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 53.21万
  • 项目类别:
    Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 53.21万
  • 项目类别:
    Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 53.21万
  • 项目类别:
    Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
  • 批准号:
    8689532
  • 财政年份:
    2014
  • 资助金额:
    $ 53.21万
  • 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
  • 批准号:
    1329780
  • 财政年份:
    2013
  • 资助金额:
    $ 53.21万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
  • 批准号:
    1329745
  • 财政年份:
    2013
  • 资助金额:
    $ 53.21万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了