Dendritic upconverting nanoparticles for multiphoton imaging and sensing
用于多光子成像和传感的树突上转换纳米颗粒
基本信息
- 批准号:8932692
- 负责人:
- 金额:$ 35.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-24 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAngiographyArchitectureBackBindingBiocompatibleBiologicalBiological ProcessBlood flowBrainCerebrovascular CirculationCerebrumCoupledDendrimersDetectionDyesElectric StimulationEnergy TransferEvaluationFluorescenceFrequenciesFunctional Magnetic Resonance ImagingGoalsHealthImageImageryImaging TechniquesIonsLanthanoid Series ElementsLasersLigandsLightMeasurementMethodsMicroscopicMicroscopyModificationMorphologyMusNeurosciencesOpticsOxygenPartial PressurePhotonsPhysiologic pulsePhysiologicalPilot ProjectsPosterior Pituitary GlandProblem SolvingPropertyRadiationResolutionRiskRodentRodent ModelRouteSamplingSchemeShapesSignal TransductionSolutionsSourceStrokeSurfaceTechnologyTestingTimeTissuesToxic effectVariantVesicleVisible RadiationWaterabsorptionbasebioimagingblood rheologycarboxylatechemical propertychromophorecostdesignextracellularfeedingimaging modalityimaging probein vivoluminescencemacromoleculenanoparticleneurotransmitter releasepreventratiometricresearch studytwo-photon
项目摘要
DESCRIPTION (provided by applicant): In this project we address the need in probes for two-photon microscopy - the leading imaging technique for dynamic visualization and quantification of biological processes in vivo in 3D with micron-scale spatial resolution. We propose to develop a new class of multiphoton probes, termed dendritic UCNPs, which comprise lanthanide-based up converting nanoparticles (UCNPs) and dendritic ligands. The key advantage of UCNPs is their enormously high multiphoton absorption cross-sections, which exceed those of the most efficient multiphoton probes available today by several orders of magnitude. Recently, we demonstrated that due to this remarkable property, in vivo two-photon depth-resolved microscopic imaging with UCNPs can be accomplished using simple low-power continuous-wave (CW) infrared light sources, which is in contrast to conventional two-photon experiments requiring very expensive pulsed femtosecond lasers. This remarkable advantage comes on top of other benefits of UCNPs, which include record-high photo stability, zero background fluorescence (due to CW infrared excitation) and greatly diminished risk of photo damage. However, lack of robust methods of UCNP solubilization and functionalization has been a major obstacle preventing their inclusion into the toolkit of modern imaging methods. We propose to solve this problem by using dendritic macromolecules. Our key proposition is that modification of UCNP surfaces with hydrophilic shape-persistent dendrimers will make up an efficient and general route to soluble bio-compatible UCNPs, whose luminescence will be coupled to analyte detection via UCNP-to-dendrimer excitation energy transfer (EET). Our approach capitalizes on unique structural features of dendritic architecture, i.e. intrinsic polyvalency and pseudo- globular shape. Both "colorless" probes for morphologic angiographic two-photon imaging and dedicated probes for imaging of specific analytes (pH and Ca2+) will be developed. To test the probes we will perform: (a) angiographic imaging in vivo in rodent brain, determining changes in blood rheology upon functional stimulation; (b) simultaneous in vivo multiphoton imaging of alterations in tissue pH and partial pressure of oxygen (pO2) in stroke rodent models; d) imaging of extracellular Ca2+ flux in mouse neurohypophysis upon electrical stimulation. All these experiments will differ from conventional multiphoton imaging in that the cost of the excitation sources will be lower by ca 1000 fold. These applications will demonstrate the ability of the new probes to a) replace currently used expensive multiphoton setups; and b) go beyond and address questions and hypotheses in neuroscience for which no alternative solutions are currently available.
描述(由申请人提供):在该项目中,我们解决了双光子显微镜探针的需求,双光子显微镜是一种领先的成像技术,用于以微米级空间分辨率对体内生物过程进行 3D 动态可视化和定量。我们建议开发一类新型多光子探针,称为树突状 UCNP,其包含基于镧系元素的上转换纳米粒子(UCNP)和树突配体。 UCNP 的主要优势是其极高的多光子吸收截面,比当今最有效的多光子探针高出几个数量级。最近,我们证明,由于这种显着的特性,使用 UCNP 进行体内双光子深度分辨显微成像可以使用简单的低功率连续波 (CW) 红外光源来完成,这与需要非常昂贵的脉冲飞秒激光器的传统双光子实验形成鲜明对比。这一显着优势超越了 UCNP 的其他优势,包括创纪录的高光稳定性、零背景荧光(由于连续波红外激发)以及大大降低的光损伤风险。然而,缺乏可靠的 UCNP 溶解和功能化方法一直是阻碍其纳入现代成像方法工具包的主要障碍。我们建议通过使用树枝状大分子来解决这个问题。我们的关键主张是,用亲水性形状持久的树枝状聚合物对 UCNP 表面进行修饰,将形成一条有效且通用的可溶性生物相容性 UCNP 的途径,其发光将通过 UCNP 到树枝状聚合物的激发能量转移 (EET) 与分析物检测耦合。我们的方法利用了树突结构的独特结构特征,即内在的多价性和伪球状形状。将开发用于形态学血管造影双光子成像的“无色”探针和用于特定分析物(pH 和 Ca2+)成像的专用探针。为了测试探针,我们将执行:(a)啮齿动物大脑体内血管造影成像,确定功能刺激后血液流变学的变化; (b) 中风啮齿动物模型中组织 pH 值和氧分压 (pO2) 变化的同时体内多光子成像; d) 电刺激后小鼠神经垂体细胞外 Ca2+ 通量的成像。所有这些实验都与传统的多光子成像不同,因为激发源的成本将降低约 1000 倍。这些应用将展示新探针的能力: a) 取代目前使用的昂贵的多光子装置; b) 超越并解决目前没有替代解决方案的神经科学问题和假设。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SERGEI VINOGRADOV其他文献
SERGEI VINOGRADOV的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SERGEI VINOGRADOV', 18)}}的其他基金
Dendritic upconverting nanoparticles for multiphoton imaging and sensing
用于多光子成像和传感的树突上转换纳米颗粒
- 批准号:
8815403 - 财政年份:2014
- 资助金额:
$ 35.72万 - 项目类别:
DENDRITIC OXYGEN SENSOR WITH TWO-PHOTON ABSORBING ANTENNA
具有双光子吸收天线的树枝状氧传感器
- 批准号:
8362568 - 财政年份:2011
- 资助金额:
$ 35.72万 - 项目类别:
DENDRITIC OXYGEN SENSOR WITH TWO-PHOTON ABSORBING ANTENNA
具有双光子吸收天线的树枝状氧传感器
- 批准号:
8169540 - 财政年份:2010
- 资助金额:
$ 35.72万 - 项目类别:
DENDRITIC OXYGEN SENSOR WITH TWO-PHOTON ABSORBING ANTENNA
带双光子吸收天线的树枝状氧传感器
- 批准号:
7955437 - 财政年份:2009
- 资助金额:
$ 35.72万 - 项目类别:
DENDRITIC OXYGEN SENSOR WITH TWO-PHOTON ABSORBING ANTENNA
带双光子吸收天线的树枝状氧传感器
- 批准号:
7723846 - 财政年份:2008
- 资助金额:
$ 35.72万 - 项目类别:
Oxygen microscopy by two-photon excited phosphorescence
双光子激发磷光氧气显微镜
- 批准号:
7568976 - 财政年份:2007
- 资助金额:
$ 35.72万 - 项目类别:
相似海外基金
SBIR Phase II: Novel size-changing, gadolinium-free contrast agent for magnetic resonance angiography
SBIR II 期:用于磁共振血管造影的新型尺寸变化、无钆造影剂
- 批准号:
2322379 - 财政年份:2023
- 资助金额:
$ 35.72万 - 项目类别:
Cooperative Agreement
ImproviNg rEnal outcomes following coronary angiograPhy and/or percuTaneoUs coroNary intErventions: a pragmatic, adaptive, patient-oriented randomized controlled trial
改善冠状动脉造影和/或经皮冠状动脉介入治疗后的肾脏结局:一项务实、适应性、以患者为导向的随机对照试验
- 批准号:
478732 - 财政年份:2023
- 资助金额:
$ 35.72万 - 项目类别:
Operating Grants
Neonatal Optical Coherence Tomography Angiography to Assess the Effects of Postnatal Exposures on Retinal Development and Predict Neurodevelopmental Outcomes
新生儿光学相干断层扫描血管造影评估产后暴露对视网膜发育的影响并预测神经发育结果
- 批准号:
10588086 - 财政年份:2023
- 资助金额:
$ 35.72万 - 项目类别:
Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
- 批准号:
10602275 - 财政年份:2023
- 资助金额:
$ 35.72万 - 项目类别:
Highly Accelerated Magnetic Resonance Angiography using Deep Learning
使用深度学习的高加速磁共振血管造影
- 批准号:
2886357 - 财政年份:2023
- 资助金额:
$ 35.72万 - 项目类别:
Studentship
Development of a method to simultaneously obtain cerebral blood flow information and progression of cerebral white matter lesions using head MR angiography.
开发一种使用头部磁共振血管造影同时获取脑血流信息和脑白质病变进展的方法。
- 批准号:
23K14839 - 财政年份:2023
- 资助金额:
$ 35.72万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of a new diagnostic method for coronary artery disease using automated image analysis with postmortem coronary angiography CT
使用死后冠状动脉造影 CT 自动图像分析开发冠状动脉疾病的新诊断方法
- 批准号:
23K19795 - 财政年份:2023
- 资助金额:
$ 35.72万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Novel ultrahigh speed swept source OCT angiography methods in diabetic retinopathy
糖尿病视网膜病变的新型超高速扫源 OCT 血管造影方法
- 批准号:
10656644 - 财政年份:2023
- 资助金额:
$ 35.72万 - 项目类别:
Automated Machine Learning-Based Brain Artery Segmentation, Anatomical Prior Labeling, and Feature Extraction on MR Angiography
基于自动机器学习的脑动脉分割、解剖先验标记和 MR 血管造影特征提取
- 批准号:
10759721 - 财政年份:2023
- 资助金额:
$ 35.72万 - 项目类别:
SCH: A physics-informed machine learning approach to dynamic blood flow analysis from static subtraction computed tomographic angiography imaging
SCH:一种基于物理的机器学习方法,用于从静态减影计算机断层血管造影成像中进行动态血流分析
- 批准号:
2205265 - 财政年份:2022
- 资助金额:
$ 35.72万 - 项目类别:
Standard Grant