Biological Spatial Resolution Limits in fMRI
fMRI 中的生物空间分辨率限制
基本信息
- 批准号:8633457
- 负责人:
- 金额:$ 17.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-03-15 至 2016-02-29
- 项目状态:已结题
- 来源:
- 关键词:AmblyopiaAnatomyAnimalsArchitectureAreaBiologicalBiologyBloodBlood VesselsBlood capillariesBlood flowBrainCerebral Amyloid AngiopathyComputer AnalysisCore-Binding FactorCortical ColumnCouplingDataData AnalysesDistalElectrical EngineeringExhibitsExperimental DesignsFacultyFunctional Magnetic Resonance ImagingFutureGeneral HospitalsGoalsHistologyHumanHyperemiaImageImaging TechniquesIndividualJointsKnowledgeMacacaMagnetic Resonance ImagingMapsMassachusettsMeasurementMeasuresMentorshipMethodologyMethodsMetricModelingMonkeysNervous system structureNeuronsOcular DominanceOcular dominance columnsOutputPatientsPatternPhysicsPhysiologyPial VeinsPositioning AttributeProsthesisProtocols documentationRadialRelative (related person)ResolutionRestSamplingSignal TransductionSliceSpecificityStimulusStructureSurfaceTechniquesTestingTissuesTrainingTraining SupportVascular SystemVeinsVisualVisual CortexVisual system structurearea V1area striatabasebioimagingcapillarycareer developmentcomputational neurosciencedata acquisitiondensitydesigndesign and constructiondetectorhemodynamicsimaging modalityimprovedinsightinstrumentationmembermonocularneuroimagingnew technologynon-invasive imagingnoveloptical imagingorientation selectivitypublic health relevanceradiofrequencyrelating to nervous systemresponseretinotopictoolwhite matter
项目摘要
DESCRIPTION (provided by applicant): This project will support the training and career development of a junior faculty member, with prior training in computational neuroscience and electrical engineering, transitioning into the fields of magnetic resonance imaging (MRI) and functional neuroimaging. This training will take place at the A. A. Martinos Center for Biomedical Imaging at the Massachusetts General Hospital, under the mentorship of Prof. L. L. Wald, within the Ultrahigh-field Imaging and Imaging Physics Group. The candidate will conduct a study into quantifying the fundamental biological limits of spatial resolution in functional MRI, and perform precise measurements of the functional architecture of the human visual system using novel methods developed to overcome resolution limits placed by the instrumentation, data acquisition and experimental design, and data analysis. The long-term objective of this project is to enable non-invasive imaging of fine-scale details of the human visual cortex, including the distinctive spatial maps of orientation preference, ocular dominance, and retinotopy, with a spatial resolution sufficient to derive accurate, quantitative measurements of these basic features of the visual system. To quantify the biological limits of spatial resolution, this study will focus on three aims: (i) to develop a methodology for quantifying spatial resolution and accuracy in fMRI; (ii) to measure spatial accuracy across multiple experimental designs and identify which provides the highest achievable resolution; and (iii) to exploit this knowledge to measure and quantify the topographic and columnar structures in primary visual cortex, and thus draw informed conclusions about their organization based on the known measurement accuracy. Although estimates of spatial resolution have been made in the past, new advances in both acquisition and analysis technology, and new insights into experimental design, require that these estimates be re-assessed to determine what is now feasible. Importantly, emerging methods at our disposals enable resolving activity within individual cortical laminae. Not only does laminar fMRI open possibilities for testing new hypotheses about the nervous system and neurovascular coupling, but the proposed methods may yield a practical technique for increasing spatial resolution-due to the tighter biological point-spread expected in central vascular layers distal to large pial veins, targeted sampling of these layers will enable higher achievable spatial resolution. The candidate will receive training in ultrahigh-field imaging methods, accelerated parallel imaging techniques, design and construction of radiofrequency coil detectors, accurate computational analysis of fMRI data, and the anatomy and physiology of the human brain and its vascular system. The tools developed for this study can assist in several applications such as identifying pathological tissue in patients with visual deficits or amblyopia, measuring the impact of localized hyperemia in patients with occipital cerebral amyloid angiopathy, designing cortical prostheses, and will enable future studies into the fine organization of the nervous system.
PUBLIC HEALTH RELEVANCE: PROJECT NARRATIVE The spatial accuracy of functional MRI is limited by the biology of blood delivery. We will impose spatial patterns of activity along the cortex to measure the spatial accuracy in individual cortical layers, and use these patterns to test methods for further improving accuracy.
描述(申请人提供):本项目将支持一名初级教员的培训和职业发展,该教员之前受过计算神经科学和电子工程方面的培训,并将过渡到磁共振成像(MRI)和功能神经成像领域。本次培训将在麻省总医院A. A. Martinos生物医学成像中心进行,由超高场成像和成像物理组的L. L. Wald教授指导。该候选人将进行一项研究,量化功能性MRI空间分辨率的基本生物学极限,并使用开发的新方法对人类视觉系统的功能结构进行精确测量,以克服仪器,数据采集和实验设计以及数据分析所带来的分辨率限制。该项目的长期目标是实现人类视觉皮层精细细节的非侵入性成像,包括定向偏好、眼优势和视网膜切除的独特空间地图,具有足够的空间分辨率,可以对视觉系统的这些基本特征进行精确的定量测量。为了量化空间分辨率的生物学极限,本研究将集中在三个目标上:(i)开发一种量化fMRI空间分辨率和准确性的方法;(ii)测量多个实验设计的空间精度,并确定哪一个提供可实现的最高分辨率;(iii)利用这些知识来测量和量化初级视觉皮层的地形和柱状结构,从而根据已知的测量精度得出关于它们的组织的明智结论。虽然过去已经对空间分辨率进行了估计,但获取和分析技术的新进展以及对实验设计的新见解要求对这些估计进行重新评估,以确定现在可行的方法。重要的是,我们掌握的新兴方法能够解决单个皮质层内的活动。层流功能磁共振成像不仅为测试神经系统和神经血管耦合的新假设提供了可能性,而且所提出的方法可能产生一种实用的技术来提高空间分辨率——由于在大脑脊液远端的中央血管层中预期的更紧密的生物点分布,这些层的目标采样将实现更高的空间分辨率。候选人将接受超高场成像方法、加速并行成像技术、射频线圈探测器的设计和构建、功能磁共振成像数据的精确计算分析以及人脑及其血管系统的解剖学和生理学方面的培训。为本研究开发的工具可用于多种应用,如识别视力缺陷或弱视患者的病理组织,测量枕脑淀粉样血管病患者局部充血的影响,设计皮质假体,并将使未来的神经系统精细组织研究成为可能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Rizzo Polimeni其他文献
Jonathan Rizzo Polimeni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Rizzo Polimeni', 18)}}的其他基金
High-Performance Gradient Coil for 7 Tesla MRI
用于 7 特斯拉 MRI 的高性能梯度线圈
- 批准号:
10630533 - 财政年份:2023
- 资助金额:
$ 17.54万 - 项目类别:
fMRI Technologies for Imaging at the Limit of Biological Spatiotemporal Resolution: Administrative Supplement
用于生物时空分辨率极限成像的 fMRI 技术:行政补充
- 批准号:
10833383 - 财政年份:2023
- 资助金额:
$ 17.54万 - 项目类别:
CRCNS: Computational Modeling of Microvascular Effects in Cortical Laminar fMRI
CRCNS:皮质层状功能磁共振成像微血管效应的计算模型
- 批准号:
10643880 - 财政年份:2021
- 资助金额:
$ 17.54万 - 项目类别:
CRCNS: Computational Modeling of Microvascular Effects in Cortical Laminar fMRI
CRCNS:皮质层状功能磁共振成像微血管效应的计算模型
- 批准号:
10482354 - 财政年份:2021
- 资助金额:
$ 17.54万 - 项目类别:
CRCNS: Computational Modeling of Microvascular Effects in Cortical Laminar fMRI
CRCNS:皮质层状功能磁共振成像微血管效应的计算模型
- 批准号:
10398277 - 财政年份:2021
- 资助金额:
$ 17.54万 - 项目类别:
Improving Human fMRI through Modeling and Imaging Microvascular Dynamics
通过微血管动力学建模和成像改善人类功能磁共振成像
- 批准号:
9753356 - 财政年份:2016
- 资助金额:
$ 17.54万 - 项目类别:
Improving Human fMRI through Modeling and Imaging Microvascular Dynamics: Administrative Supplement
通过微血管动力学建模和成像改善人类功能磁共振成像:行政补充
- 批准号:
10179989 - 财政年份:2016
- 资助金额:
$ 17.54万 - 项目类别:
Improving Human fMRI through Modeling and Imaging Microvascular Dynamics
通过微血管动力学建模和成像改善人类功能磁共振成像
- 批准号:
9205860 - 财政年份:2016
- 资助金额:
$ 17.54万 - 项目类别:
Improving Human fMRI through Modeling and Imaging Microvascular Dynamics
通过微血管动力学建模和成像改善人类功能磁共振成像
- 批准号:
9974595 - 财政年份:2016
- 资助金额:
$ 17.54万 - 项目类别:
Fast MRI at the Limit of Biological Temporal Resolution
生物时间分辨率极限的快速 MRI
- 批准号:
9428443 - 财政年份:2015
- 资助金额:
$ 17.54万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 17.54万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 17.54万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 17.54万 - 项目类别:
Standard Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 17.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 17.54万 - 项目类别:
Research Grant
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 17.54万 - 项目类别:
Studentship
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 17.54万 - 项目类别:
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 17.54万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 17.54万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 17.54万 - 项目类别:
Studentship














{{item.name}}会员




