Quantitative CT Imaging for Response Assessment when using Dose Reduction Methods

使用剂量减少方法时用于疗效评估的定量 CT 成像

基本信息

  • 批准号:
    8841696
  • 负责人:
  • 金额:
    $ 37.47万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-05-01 至 2017-04-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Despite widespread concerns over radiation dose, CT continues to be widely used for assessing response to therapy in many clinical trials settings. There have been significant developments which allow the reduction of radiation dose from CT, including advances in iterative reconstruction techniques, detector technologies and others that promise significant dose reductions (50-60 percent) to patients, while maintaining clinical image quality. While these technologies should be investigated wherever possible in a clinical environment, their effects on quantitative measures extracted from CT images are unclear and need to be investigated before they are deployed in clinical trials. Simply reducing tube current time product (mAs) will increase image noise, which may increase variability in quantitative measures. Size measures may be affected differently depending on the anatomic region; lung lesions (typically high contrast objects) may be affected differently from liver lesions (typically lower contrast). Peak values measured when contrast enhanced studies are used may also respond to dose reductions differently. In addition, because new iterative reconstruction methods reduce noise, they often also smooth the image somewhat, which may affect size and density (e.g. average HU) measures. Therefore, this application proposes to systematically investigate the effects of radiation dose reduction methods on quantitative metrics used in clinical trials. The goal is to determine how far we can decrease dose under different conditions before we increase variance to unacceptable levels in the context of clinical trials using quantitative measures to assess response to therapy. We have proposed three specific aims to carry out this research. In the first aim, we propose to create a collection of cases that represen a range of low dose acquisition and reconstruction scenarios in specific quantitative imaging tasks. This will be accomplished using a calibrated dose reduction simulation method (noise insertion tool) and then reconstructing images under a wide variety of dose reduction levels and reconstruction methods. The second specific aim will be to extract quantitative Imaging measures from these reconstructed image data sets and analyze variance of quantitative measures across dose levels and reconstruction methods. The third will use the results of the second aim's analysis to evaluate reduced dose imaging effects in a prospective clinical trial. The overall goal is to provide guidance to the QIN, and clinical trials in general, regarding the use of both standardized protocols and the use of dose reduction methods, with the ultimate goal of determining the levels of dose reduction that yield acceptable levels of measurement variance in several assessment tasks/environments.
描述(由申请人提供):尽管人们普遍担心辐射剂量,但在许多临床试验中,CT仍被广泛用于评估治疗反应。在降低CT辐射剂量方面已经取得了重大进展,包括迭代重建技术、检测器技术和其他技术的进步,这些技术有望在保持临床图像质量的同时,显著降低患者的剂量(50- 60%)。虽然这些技术应该尽可能在临床环境中进行研究,但它们对从CT图像中提取的定量测量的影响尚不清楚,需要在临床试验中部署之前进行研究。简单地降低管电流时间积(mAs)会增加图像噪声,从而增加定量测量的可变性。根据解剖区域的不同,尺寸测量可能受到不同的影响;肺部病变(通常是高对比度物体)可能与肝脏病变(通常是高对比度物体)的影响不同

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MATTHEW S BROWN其他文献

MATTHEW S BROWN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MATTHEW S BROWN', 18)}}的其他基金

Robust Clinical Translation of CT Imaging Biomarker in COPD for EBV Patient Selection
COPD 中 CT 成像生物标志物的稳健临床转化,用于 EBV 患者选择
  • 批准号:
    10593063
  • 财政年份:
    2021
  • 资助金额:
    $ 37.47万
  • 项目类别:
Robust Clinical Translation of CT Imaging Biomarker in COPD for EBV Patient Selection
COPD 中 CT 成像生物标志物的稳健临床转化,用于 EBV 患者选择
  • 批准号:
    10378091
  • 财政年份:
    2021
  • 资助金额:
    $ 37.47万
  • 项目类别:
Robust Clinical Translation of CT Imaging Biomarker in COPD for EBV Patient Selection
COPD 中 CT 成像生物标志物的稳健临床转化,用于 EBV 患者选择
  • 批准号:
    10212136
  • 财政年份:
    2021
  • 资助金额:
    $ 37.47万
  • 项目类别:
Quantitative CT Imaging for Response Assessment when using Dose Reduction Methods
使用剂量减少方法时用于疗效评估的定量 CT 成像
  • 批准号:
    8615963
  • 财政年份:
    2014
  • 资助金额:
    $ 37.47万
  • 项目类别:
Quantitative CT Imaging for Response Assessment when using Dose Reduction Methods
使用剂量减少方法时用于疗效评估的定量 CT 成像
  • 批准号:
    9055664
  • 财政年份:
    2014
  • 资助金额:
    $ 37.47万
  • 项目类别:
PATIENT SPECIFIC MODELS IN LUNG CANCER SCREENING WITH CT
CT 肺癌筛查中的患者特异性模型
  • 批准号:
    6702255
  • 财政年份:
    2001
  • 资助金额:
    $ 37.47万
  • 项目类别:
PATIENT SPECIFIC MODELS IN LUNG CANCER SCREENING WITH CT
CT 肺癌筛查中的患者特异性模型
  • 批准号:
    6498036
  • 财政年份:
    2001
  • 资助金额:
    $ 37.47万
  • 项目类别:
PATIENT SPECIFIC MODELS IN LUNG CANCER SCREENING WITH CT
CT 肺癌筛查中的患者特异性模型
  • 批准号:
    6628487
  • 财政年份:
    2001
  • 资助金额:
    $ 37.47万
  • 项目类别:
PATIENT SPECIFIC MODELS IN LUNG CANCER SCREENING WITH CT
CT 肺癌筛查中的患者特异性模型
  • 批准号:
    6226324
  • 财政年份:
    2001
  • 资助金额:
    $ 37.47万
  • 项目类别:

相似海外基金

Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
  • 批准号:
    EP/Z000882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.47万
  • 项目类别:
    Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
  • 批准号:
    BB/Y513908/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.47万
  • 项目类别:
    Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
  • 批准号:
    23K11917
  • 财政年份:
    2023
  • 资助金额:
    $ 37.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
  • 批准号:
    10555809
  • 财政年份:
    2023
  • 资助金额:
    $ 37.47万
  • 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
  • 批准号:
    2825967
  • 财政年份:
    2023
  • 资助金额:
    $ 37.47万
  • 项目类别:
    Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
  • 批准号:
    BB/X013227/1
  • 财政年份:
    2023
  • 资助金额:
    $ 37.47万
  • 项目类别:
    Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
  • 批准号:
    2235348
  • 财政年份:
    2023
  • 资助金额:
    $ 37.47万
  • 项目类别:
    Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
  • 批准号:
    10761060
  • 财政年份:
    2023
  • 资助金额:
    $ 37.47万
  • 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
  • 批准号:
    10751126
  • 财政年份:
    2023
  • 资助金额:
    $ 37.47万
  • 项目类别:
Anatomy and functions of LTP interactomes and their relationship to small RNA signals in systemic acquired resistance
LTP相互作用组的解剖和功能及其与系统获得性耐药中小RNA信号的关系
  • 批准号:
    BB/X013049/1
  • 财政年份:
    2023
  • 资助金额:
    $ 37.47万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了