Robust Clinical Translation of CT Imaging Biomarker in COPD for EBV Patient Selection

COPD 中 CT 成像生物标志物的稳健临床转化,用于 EBV 患者选择

基本信息

  • 批准号:
    10593063
  • 负责人:
  • 金额:
    $ 68.23万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Chronic obstructive pulmonary disease (COPD), which includes conditions such as emphysema, is the fourth leading cause of death in the United States. Although progression of COPD can be slowed through lifestyle changes, the disease is incurable. New treatment/management options emerged recently when the FDA approved endobronchial valves (EBV) as a Breakthrough Device for the treatment of severe COPD. EBVs provide a new treatment pathway but their implantation is associated with morbidity and mortality risks. In addition, not every patient who undergoes implantation has demonstrated the expected benefits from the device. Trial data indicate that imaging data can be used to help identify patients in whom an EBV will be effective, showing specifically that effectiveness increases in patients with heterogeneous COPD with complete fissures in the targeted lobes. The EBV is officially indicated for “severe emphysema in regions of the lung that have little to no collateral ventilation,” but interpretation of these criteria is imprecise and qualitative. The goal of this proposal is to develop more unified, robust, and quantitative criteria that will more successfully identify patients that are likely to respond to EBV implantation. The three most predictive variables identified by clinical trials to date have been the degree of severity of COPD, the heterogeneity of COPD between adjacent lobes and fissure completeness, all of which can be assessed by CT imaging. However, quantification of COPD severity can be confounded by the CT acquisition and reconstruction parameter selections used in the imaging protocol. These can also affect the ability to assess fissure completeness. In addition, traditional measures of COPD severity (i.e. Emphysema score) do not distinguish lung destruction from airtrapping, which may be important in assessing whether a patient is a good candidate for an EBV. In this proposal, we will investigate methods to standardize CT imaging data that would allow for more robust quantitative image analysis and apply the resulting methods to develop a more robust criteria for patient selection for the application of EBV devices. Therefore, our Specific Aims are: (1) To develop methods for robust, quantitative CT estimates of lung density and the Fissure Integrity Score (FIS). This will involve the application of methods to account for differences in CT scanners and acquisition/reconstruction parameters as well as machine learning methods to more accurately assess lung fissure integrity; (2) To develop and test an EBV predictive model using improved measures. Using the improved estimates of lung density and FIS from aim 1, we will develop and test a predictive model that distinguishes EBV responders from non-responders; and (3) To extend the EBV Prediction Model to incorporate additional biomarkers. We will extend the EBV scoring model by investigating other biomarkers that may provide complementary information, such as distinguishing airtrapping from COPD and an assessment of lung vascularity. We evaluate the ability of this extended model to improve our ability to distinguish EBV responders from non-responders.
项目摘要 慢性阻塞性肺疾病(COPD),包括肺气肿等疾病,是第四种 美国的主要死因。虽然COPD的进展可以通过生活方式来减缓 变化,这种疾病是无法治愈的。最近出现了新的治疗/管理选择, 获批支气管内瓣膜(EBV)作为治疗重度COPD的突破性器械。EBVs 提供了一种新的治疗途径,但它们的植入与发病率和死亡率风险相关。在 此外,并非所有接受植入的患者都证明了该器械的预期受益。 试验数据表明,成像数据可用于帮助识别EBV有效的患者, 特别显示,在具有完全裂缝的异质性COPD患者中, 在目标肺叶中。EB病毒被正式用于“肺气肿的严重区域, 但对这些标准的解释是不精确和定性的。这个目标 一项建议是制定更统一、更有力和更量化的标准, 可能对EBV植入有反应的患者。确定的三个最具预测性的变量 到目前为止的临床试验一直是COPD的严重程度,相邻COPD之间的异质性, 叶和裂的完整性,所有这些都可以通过CT成像进行评估。然而,COPD的量化 成像中使用的CT采集和重建参数选择可能会混淆严重程度 议定书这些也会影响评估裂缝完整性的能力。此外,传统的 COPD严重程度(即肺气肿评分)不能区分肺破坏与空气潴留,这可能是 在评估患者是否是EBV的良好候选人方面很重要。在这份提案中,我们将调查 标准化CT成像数据的方法,这些方法将允许更稳健的定量图像分析,并应用于 由此产生的方法,以制定一个更强大的标准,为患者选择的应用EBV设备。 因此,我们的具体目标是:(1)发展稳健的,定量的CT评估肺的方法 密度和裂隙完整性评分(FIS)。这将涉及应用各种方法, CT扫描仪和采集/重建参数的差异以及机器学习方法, 更准确地评估肺裂的完整性;(2)开发和测试EBV预测模型, 改进措施。使用目标1的肺密度和FIS的改进估计,我们将开发和 测试区分EBV应答者与非应答者的预测模型;以及(3)为了延长EBV应答者的寿命, 预测模型纳入其他生物标志物。我们将扩展EBV评分模型, 研究其他生物标志物,可以提供补充信息,如区分空气滞留 和肺血管分布的评估。我们评估这个扩展模型的能力,以提高 我们区分EB病毒应答者和非应答者的能力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MATTHEW S BROWN其他文献

MATTHEW S BROWN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MATTHEW S BROWN', 18)}}的其他基金

Robust Clinical Translation of CT Imaging Biomarker in COPD for EBV Patient Selection
COPD 中 CT 成像生物标志物的稳健临床转化,用于 EBV 患者选择
  • 批准号:
    10378091
  • 财政年份:
    2021
  • 资助金额:
    $ 68.23万
  • 项目类别:
Robust Clinical Translation of CT Imaging Biomarker in COPD for EBV Patient Selection
COPD 中 CT 成像生物标志物的稳健临床转化,用于 EBV 患者选择
  • 批准号:
    10212136
  • 财政年份:
    2021
  • 资助金额:
    $ 68.23万
  • 项目类别:
Quantitative CT Imaging for Response Assessment when using Dose Reduction Methods
使用剂量减少方法时用于疗效评估的定量 CT 成像
  • 批准号:
    8615963
  • 财政年份:
    2014
  • 资助金额:
    $ 68.23万
  • 项目类别:
Quantitative CT Imaging for Response Assessment when using Dose Reduction Methods
使用剂量减少方法时用于疗效评估的定量 CT 成像
  • 批准号:
    9055664
  • 财政年份:
    2014
  • 资助金额:
    $ 68.23万
  • 项目类别:
Quantitative CT Imaging for Response Assessment when using Dose Reduction Methods
使用剂量减少方法时用于疗效评估的定量 CT 成像
  • 批准号:
    8841696
  • 财政年份:
    2014
  • 资助金额:
    $ 68.23万
  • 项目类别:
PATIENT SPECIFIC MODELS IN LUNG CANCER SCREENING WITH CT
CT 肺癌筛查中的患者特异性模型
  • 批准号:
    6702255
  • 财政年份:
    2001
  • 资助金额:
    $ 68.23万
  • 项目类别:
PATIENT SPECIFIC MODELS IN LUNG CANCER SCREENING WITH CT
CT 肺癌筛查中的患者特异性模型
  • 批准号:
    6498036
  • 财政年份:
    2001
  • 资助金额:
    $ 68.23万
  • 项目类别:
PATIENT SPECIFIC MODELS IN LUNG CANCER SCREENING WITH CT
CT 肺癌筛查中的患者特异性模型
  • 批准号:
    6628487
  • 财政年份:
    2001
  • 资助金额:
    $ 68.23万
  • 项目类别:
PATIENT SPECIFIC MODELS IN LUNG CANCER SCREENING WITH CT
CT 肺癌筛查中的患者特异性模型
  • 批准号:
    6226324
  • 财政年份:
    2001
  • 资助金额:
    $ 68.23万
  • 项目类别:

相似海外基金

How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.23万
  • 项目类别:
    Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 68.23万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 68.23万
  • 项目类别:
    Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.23万
  • 项目类别:
    Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.23万
  • 项目类别:
    Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 68.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 68.23万
  • 项目类别:
    Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 68.23万
  • 项目类别:
    Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
  • 批准号:
    23K00129
  • 财政年份:
    2023
  • 资助金额:
    $ 68.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
  • 批准号:
    2883985
  • 财政年份:
    2023
  • 资助金额:
    $ 68.23万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了