Robust Clinical Translation of CT Imaging Biomarker in COPD for EBV Patient Selection
COPD 中 CT 成像生物标志物的稳健临床转化,用于 EBV 患者选择
基本信息
- 批准号:10378091
- 负责人:
- 金额:$ 67.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AccountingAffectAirBiological MarkersBlood VesselsCause of DeathChronic Obstructive Pulmonary DiseaseClinicalClinical TrialsCollaborationsComputer Vision SystemsDataData SetDevelopmentDevicesDiseaseEffectivenessEligibility DeterminationFDA approvedFissuralGoalsHeterogeneityImageImage AnalysisLife StyleLobarLobeLungLung TransplantationLung Volume ReductionsMeasuresMethodsModelingMorbidity - disease rateOutcomePathway interactionsPatient SelectionPatientsPerfusionProgressive DiseaseProtocols documentationPulmonary EmphysemaRecording of previous eventsResearchSeveritiesSeverity of illnessShortness of BreathStandardizationStructure of parenchyma of lungTestingUnited StatesUniversitiesWorkX-Ray Computed Tomographyclinical translationdensitydisease heterogeneityimaging biomarkerimplantationimprovedinclusion criteriamachine learning methodmortalitymortality riskpredicting responsepredictive modelingprogramsquantitative imagingreconstructionresponders and non-responderstreatment trialventilation
项目摘要
PROJECT SUMMARY
Chronic obstructive pulmonary disease (COPD), which includes conditions such as emphysema, is the fourth
leading cause of death in the United States. Although progression of COPD can be slowed through lifestyle
changes, the disease is incurable. New treatment/management options emerged recently when the FDA
approved endobronchial valves (EBV) as a Breakthrough Device for the treatment of severe COPD. EBVs
provide a new treatment pathway but their implantation is associated with morbidity and mortality risks. In
addition, not every patient who undergoes implantation has demonstrated the expected benefits from the device.
Trial data indicate that imaging data can be used to help identify patients in whom an EBV will be effective,
showing specifically that effectiveness increases in patients with heterogeneous COPD with complete fissures
in the targeted lobes. The EBV is officially indicated for “severe emphysema in regions of the lung that have little
to no collateral ventilation,” but interpretation of these criteria is imprecise and qualitative. The goal of this
proposal is to develop more unified, robust, and quantitative criteria that will more successfully identify
patients that are likely to respond to EBV implantation. The three most predictive variables identified by
clinical trials to date have been the degree of severity of COPD, the heterogeneity of COPD between adjacent
lobes and fissure completeness, all of which can be assessed by CT imaging. However, quantification of COPD
severity can be confounded by the CT acquisition and reconstruction parameter selections used in the imaging
protocol. These can also affect the ability to assess fissure completeness. In addition, traditional measures of
COPD severity (i.e. Emphysema score) do not distinguish lung destruction from airtrapping, which may be
important in assessing whether a patient is a good candidate for an EBV. In this proposal, we will investigate
methods to standardize CT imaging data that would allow for more robust quantitative image analysis and apply
the resulting methods to develop a more robust criteria for patient selection for the application of EBV devices.
Therefore, our Specific Aims are: (1) To develop methods for robust, quantitative CT estimates of lung
density and the Fissure Integrity Score (FIS). This will involve the application of methods to account for
differences in CT scanners and acquisition/reconstruction parameters as well as machine learning methods to
more accurately assess lung fissure integrity; (2) To develop and test an EBV predictive model using
improved measures. Using the improved estimates of lung density and FIS from aim 1, we will develop and
test a predictive model that distinguishes EBV responders from non-responders; and (3) To extend the EBV
Prediction Model to incorporate additional biomarkers. We will extend the EBV scoring model by
investigating other biomarkers that may provide complementary information, such as distinguishing airtrapping
from COPD and an assessment of lung vascularity. We evaluate the ability of this extended model to improve
our ability to distinguish EBV responders from non-responders.
项目摘要
慢性阻塞性肺疾病(COPD),包括肺气肿等疾病,是第四
美国的主要死亡原因。尽管COPD的进展可以通过生活方式减慢
变化,这种疾病是无法治愈的。 FDA最近出现了新的治疗/管理选项
批准的支气管阀(EBV)是用于治疗严重COPD的突破装置。 EBV
提供新的治疗途径,但它们的实施与发病率和死亡率风险有关。在
此外,并非每个接受实施的患者都证明了该设备的预期收益。
试验数据表明,成像数据可用于帮助识别EBV有效的患者,
具体表明,异质COPD患者的有效性增加了
在目标的爱中。 EBV正式指示“肺部地区的严重肺气肿几乎没有
没有附带通风,“但是对这些标准的解释是植物和定性的。
建议是制定更统一,健壮和定量标准,以更成功地确定
可能对EBV植入反应的患者。由
迄今为止的临床试验是COPD的严重程度,COPD的异质性
爱与裂缝完整性,所有这些都可以通过CT成像进行评估。但是,数量COPD
CT采集和重建参数选择可能会混淆严重性
协议。这些也会影响评估裂缝完整性的能力。另外,传统的措施
COPD严重程度(即肺气肿得分)不会区分肺部破坏与AIRTRAPTION,这可能是
评估患者是否是EBV的良好候选者很重要。在此提案中,我们将调查
标准化CT成像数据的方法,该数据将允许更强大的定量图像分析并应用
生成的方法是为使用EBV设备的患者选择而制定更强大的标准。
因此,我们的具体目的是:(1)开发用于肺部稳健,定量CT估计值的方法
密度和裂痕完整性评分(FIS)。这将涉及应用方法来解释
CT扫描仪和采集/重建参数的差异以及机器学习方法
更准确地评估肺裂缝完整性; (2)使用
改进的措施。利用AIM 1的肺密度和FI的估计值的改进,我们将发展和
测试将EBV响应者与非反应者区分开的预测模型; (3)扩展EBV
预测模型以纳入其他生物标志物。我们将通过
调查可能提供完整信息的其他生物标志物,例如区分空运
来自COPD和肺血管的评估。我们评估了这种扩展模型改进的能力
我们将EBV响应者与非反应者区分开的能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MATTHEW S BROWN其他文献
MATTHEW S BROWN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MATTHEW S BROWN', 18)}}的其他基金
Robust Clinical Translation of CT Imaging Biomarker in COPD for EBV Patient Selection
COPD 中 CT 成像生物标志物的稳健临床转化,用于 EBV 患者选择
- 批准号:
10593063 - 财政年份:2021
- 资助金额:
$ 67.35万 - 项目类别:
Robust Clinical Translation of CT Imaging Biomarker in COPD for EBV Patient Selection
COPD 中 CT 成像生物标志物的稳健临床转化,用于 EBV 患者选择
- 批准号:
10212136 - 财政年份:2021
- 资助金额:
$ 67.35万 - 项目类别:
Quantitative CT Imaging for Response Assessment when using Dose Reduction Methods
使用剂量减少方法时用于疗效评估的定量 CT 成像
- 批准号:
8615963 - 财政年份:2014
- 资助金额:
$ 67.35万 - 项目类别:
Quantitative CT Imaging for Response Assessment when using Dose Reduction Methods
使用剂量减少方法时用于疗效评估的定量 CT 成像
- 批准号:
9055664 - 财政年份:2014
- 资助金额:
$ 67.35万 - 项目类别:
Quantitative CT Imaging for Response Assessment when using Dose Reduction Methods
使用剂量减少方法时用于疗效评估的定量 CT 成像
- 批准号:
8841696 - 财政年份:2014
- 资助金额:
$ 67.35万 - 项目类别:
PATIENT SPECIFIC MODELS IN LUNG CANCER SCREENING WITH CT
CT 肺癌筛查中的患者特异性模型
- 批准号:
6702255 - 财政年份:2001
- 资助金额:
$ 67.35万 - 项目类别:
PATIENT SPECIFIC MODELS IN LUNG CANCER SCREENING WITH CT
CT 肺癌筛查中的患者特异性模型
- 批准号:
6498036 - 财政年份:2001
- 资助金额:
$ 67.35万 - 项目类别:
PATIENT SPECIFIC MODELS IN LUNG CANCER SCREENING WITH CT
CT 肺癌筛查中的患者特异性模型
- 批准号:
6628487 - 财政年份:2001
- 资助金额:
$ 67.35万 - 项目类别:
PATIENT SPECIFIC MODELS IN LUNG CANCER SCREENING WITH CT
CT 肺癌筛查中的患者特异性模型
- 批准号:
6226324 - 财政年份:2001
- 资助金额:
$ 67.35万 - 项目类别:
相似国自然基金
聚合物纤维膜的声至内源摩擦自充电效应及对空气过滤性能的影响
- 批准号:52373103
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
空气污染与栖息地变化对生物多样性的影响:基于生态学大数据的经济研究
- 批准号:72303006
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
中国PM2.5城郊差异时空演变及其影响机制研究
- 批准号:42301093
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
农村固体燃料排放影响室内空气质量的过程和时空特征
- 批准号:42371077
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
空气颗粒物通过调控白血病抑制因子参与影响IgA肾病进展的作用与机制研究
- 批准号:82370711
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
相似海外基金
A Next Generation Data Infrastructure to Understand Disparities across the Life Course
下一代数据基础设施可了解整个生命周期的差异
- 批准号:
10588092 - 财政年份:2023
- 资助金额:
$ 67.35万 - 项目类别:
Determine the role of atmospheric particulate matter pollutants in contributing to Lewy Body Dementia
确定大气颗粒物污染物在路易体痴呆症中的作用
- 批准号:
10662930 - 财政年份:2023
- 资助金额:
$ 67.35万 - 项目类别:
Impact of ambient PM2.5 concentrations on fear extinction recall, frontolimbic circuitry, and anxiety in adolescents
环境 PM2.5 浓度对青少年恐惧消退回忆、额边缘回路和焦虑的影响
- 批准号:
10749203 - 财政年份:2023
- 资助金额:
$ 67.35万 - 项目类别:
The Role of Air Quality and Built Environment in Social Isolation and Cognitive Function among Rural, Racially/Ethnically Diverse Residents at Risk for Alzheimer's Disease
空气质量和建筑环境对有阿尔茨海默病风险的农村、种族/民族多元化居民的社会隔离和认知功能的作用
- 批准号:
10740393 - 财政年份:2023
- 资助金额:
$ 67.35万 - 项目类别:
Objective and noninvasive diagnosis of middle-ear and conductive pathologies using simulation-based inference and transfer learning applied to clinical data
使用基于模拟的推理和应用于临床数据的迁移学习来客观、无创地诊断中耳和传导性病变
- 批准号:
10438246 - 财政年份:2022
- 资助金额:
$ 67.35万 - 项目类别: