PATIENT SPECIFIC MODELS IN LUNG CANCER SCREENING WITH CT
CT 肺癌筛查中的患者特异性模型
基本信息
- 批准号:6628487
- 负责人:
- 金额:$ 27.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-02-16 至 2005-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (Verbatim from Applicant's Abstract): The objective of this
research is to develop computer-assisted methods to facilitate screening for
the early detection of lung cancer using helical computed tomography (hCT).
Proponents of existing screening trials argue that the highest enhance of
surgical cure from lung cancer lies in the detection of micronodular neoplasms
(of 1-3 mm in diameter). Multi-slice hCT is capable of imaging the entire
thorax at high spatial resolution and has the potential to reliably detect
pulmonary micronodules. However, these image sequences generate extremely large
volume data sets, consisting of 300-600 axial images, that are impractical to
review in current radiology practice.
This proposal involves development and experimental testing of a method to
automatically identify lung nodules from high resolution hCT (HR-hCT) image
data acquired from multi-slice scanners. The technique involves a model-based
segmentation approach in which information about the size, shape, location,
density and other properties of both normal and pathological structures will be
used to automate the discrimination of focal lung nodules from normal
bronchovascular anatomy. A generic, a priori model of lung nodules and relevant
anatomy will be developed to guide segmentation of baseline CT images.
Patient-specific models will be derived from the anatomical information learned
from baseline scans and used to analyze subsequent surveillance CT scans.
The specific aims to accomplish this are:
[1] To automatically distinguish lung nodules from normal pulmonary
bronchovascular structures on baseline lung cancer screening HR-hCT exams.
[2] To detect interval new nodules and re-localize previously detected nodules
on post-baseline surveillance HR-hCT exams.
[3] To measure the accuracy of automated nodule detection and re-localization
on HR-hCT scans.
[4] To compare radiologist accuracy and interpretation times of HR-hCT scans,
both with and without assistance from the automated detection system, against
pre-existing nodule detection methods.
描述(逐字摘自申请人摘要):此目的
研究的目的是开发计算机辅助方法来促进筛查
使用螺旋计算机断层扫描 (hCT) 早期检测肺癌。
现有筛查试验的支持者认为,
肺癌的手术治愈在于微结节性肿瘤的检测
(直径1-3毫米)。多层 hCT 能够对整个组织进行成像
胸部具有高空间分辨率,并且有可能可靠地检测
肺部微结节。然而,这些图像序列会产生非常大的
体积数据集,由 300-600 个轴向图像组成,这对于
回顾当前放射学实践。
该提案涉及一种方法的开发和实验测试
从高分辨率 hCT (HR-hCT) 图像中自动识别肺结节
从多层扫描仪获取的数据。该技术涉及基于模型的
分割方法,其中有关大小、形状、位置的信息,
正常和病理结构的密度和其他特性将是
用于自动区分局灶性肺结节与正常肺结节
支气管血管解剖学。肺结节和相关的通用先验模型
将开发解剖学来指导基线 CT 图像的分割。
患者特定模型将从所学到的解剖信息中得出
来自基线扫描并用于分析后续的监视 CT 扫描。
实现这一目标的具体目标是:
[1] 自动区分肺结节和正常肺结节
基线肺癌筛查 HR-hCT 检查中的支气管血管结构。
[2] 检测间隔新结节并重新定位先前检测到的结节
基线后监测 HR-hCT 检查。
[3] 测量自动结节检测和重新定位的准确性
HR-hCT 扫描。
[4] 为了比较放射科医生 HR-hCT 扫描的准确性和判读时间,
无论有或没有自动检测系统的帮助,
预先存在的结节检测方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MATTHEW S BROWN其他文献
MATTHEW S BROWN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MATTHEW S BROWN', 18)}}的其他基金
Robust Clinical Translation of CT Imaging Biomarker in COPD for EBV Patient Selection
COPD 中 CT 成像生物标志物的稳健临床转化,用于 EBV 患者选择
- 批准号:
10593063 - 财政年份:2021
- 资助金额:
$ 27.41万 - 项目类别:
Robust Clinical Translation of CT Imaging Biomarker in COPD for EBV Patient Selection
COPD 中 CT 成像生物标志物的稳健临床转化,用于 EBV 患者选择
- 批准号:
10378091 - 财政年份:2021
- 资助金额:
$ 27.41万 - 项目类别:
Robust Clinical Translation of CT Imaging Biomarker in COPD for EBV Patient Selection
COPD 中 CT 成像生物标志物的稳健临床转化,用于 EBV 患者选择
- 批准号:
10212136 - 财政年份:2021
- 资助金额:
$ 27.41万 - 项目类别:
Quantitative CT Imaging for Response Assessment when using Dose Reduction Methods
使用剂量减少方法时用于疗效评估的定量 CT 成像
- 批准号:
8615963 - 财政年份:2014
- 资助金额:
$ 27.41万 - 项目类别:
Quantitative CT Imaging for Response Assessment when using Dose Reduction Methods
使用剂量减少方法时用于疗效评估的定量 CT 成像
- 批准号:
9055664 - 财政年份:2014
- 资助金额:
$ 27.41万 - 项目类别:
Quantitative CT Imaging for Response Assessment when using Dose Reduction Methods
使用剂量减少方法时用于疗效评估的定量 CT 成像
- 批准号:
8841696 - 财政年份:2014
- 资助金额:
$ 27.41万 - 项目类别:
PATIENT SPECIFIC MODELS IN LUNG CANCER SCREENING WITH CT
CT 肺癌筛查中的患者特异性模型
- 批准号:
6702255 - 财政年份:2001
- 资助金额:
$ 27.41万 - 项目类别:
PATIENT SPECIFIC MODELS IN LUNG CANCER SCREENING WITH CT
CT 肺癌筛查中的患者特异性模型
- 批准号:
6498036 - 财政年份:2001
- 资助金额:
$ 27.41万 - 项目类别:
PATIENT SPECIFIC MODELS IN LUNG CANCER SCREENING WITH CT
CT 肺癌筛查中的患者特异性模型
- 批准号:
6226324 - 财政年份:2001
- 资助金额:
$ 27.41万 - 项目类别:
相似海外基金
FAIRClinical: FAIR-ification of Supplementary Data to Support Clinical Research
FAIRClinical:补充数据的 FAIR 化以支持临床研究
- 批准号:
EP/Y036395/1 - 财政年份:2024
- 资助金额:
$ 27.41万 - 项目类别:
Research Grant
Optimizing integration of veterinary clinical research findings with human health systems to improve strategies for early detection and intervention
优化兽医临床研究结果与人类健康系统的整合,以改进早期检测和干预策略
- 批准号:
10764456 - 财政年份:2023
- 资助金额:
$ 27.41万 - 项目类别:
The IDeA State Consortium for a Clinical Research Resource Center: Increasing Clinical Trials in IDeA States through Communication of Opportunities, Effective Marketing, and WorkforceDevelopment
IDeA 州临床研究资源中心联盟:通过机会交流、有效营销和劳动力发展增加 IDeA 州的临床试验
- 批准号:
10715568 - 财政年份:2023
- 资助金额:
$ 27.41万 - 项目类别:
The Mayo Clinic NeuroNEXT Clinical Research Site
梅奥诊所 NeuroNEXT 临床研究网站
- 批准号:
10743328 - 财政年份:2023
- 资助金额:
$ 27.41万 - 项目类别:
Addressing Underperformance in Clinical Trial Enrollments: Development of a Clinical Trial Toolkit and Expansion of the Clinical Research Footprint
解决临床试验注册表现不佳的问题:开发临床试验工具包并扩大临床研究足迹
- 批准号:
10638813 - 财政年份:2023
- 资助金额:
$ 27.41万 - 项目类别:
Improving Multicultural Engagement in Clinical Research through Partnership with Federally Qualified Health Centers and Community Health Worker Programs
通过与联邦合格的健康中心和社区卫生工作者计划合作,改善临床研究中的多元文化参与
- 批准号:
10823828 - 财政年份:2023
- 资助金额:
$ 27.41万 - 项目类别:
The Minnesota TMD IMPACT Collaborative: Integrating Basic/Clinical Research Efforts and Training to Improve Clinical Care
明尼苏达州 TMD IMPACT 协作:整合基础/临床研究工作和培训以改善临床护理
- 批准号:
10828665 - 财政年份:2023
- 资助金额:
$ 27.41万 - 项目类别:
Promoting a Culture Of Innovation, Mentorship, Diversity and Opportunity in NCI Sponsored Clinical Research: NCI Research Specialist (Clinician Scientist) Award Application of Janice M. Mehnert, M.D.
在 NCI 资助的临床研究中促进创新、指导、多样性和机会文化:Janice M. Mehnert 医学博士的 NCI 研究专家(临床科学家)奖申请
- 批准号:
10721095 - 财政年份:2023
- 资助金额:
$ 27.41万 - 项目类别:
Clinical Research Center for REstoration of NEural-based Function in the Real World (RENEW)
现实世界神经功能恢复临床研究中心 (RENEW)
- 批准号:
10795328 - 财政年份:2023
- 资助金额:
$ 27.41万 - 项目类别:
Clinical Research and Academic Success in Obstetrics & Gynecology
产科临床研究和学术成就
- 批准号:
10828252 - 财政年份:2023
- 资助金额:
$ 27.41万 - 项目类别:














{{item.name}}会员




