The BD2K Concept Network: open sharing of active-learning and tools online
BD2K 概念网络:在线主动学习和工具的开放共享
基本信息
- 批准号:8935852
- 负责人:
- 金额:$ 21.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-29 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:Active LearningAlgorithmsBig DataBioinformaticsBiologicalCellular PhoneClassificationCodeCollaborationsCollectionCommunitiesComputersDataData CollectionData SetDevelopmentDisciplineEducationEducational process of instructingEducational workshopEffectivenessEquipment and supply inventoriesEvaluation StudiesExerciseGuidelinesHealthIndividualInstitutionInterdisciplinary EducationKnowledgeLearningLinkMeasuresMedical InformaticsMethodsModelingPeer ReviewPilot ProjectsPlug-inPre-Post TestsPrintingProblem SolvingProceduresProtocols documentationResearch PersonnelSecureServicesSlideSourceStudentsSystemTeaching MaterialsTestingTextbooksThinkingTrainingValidationVideo RecordingWorkWritingcandidate validationdata miningdata modelingdesigninstructorlaptoplecturesmethod developmentnovelproblems and exercisesprogramsremediationrepositoryresponseskillssuccesstoolvirtual
项目摘要
DESCRIPTION (provided by applicant): The proposed project will create online services, teaching materials sharing, and training for instructors and students to 1) expand and tailor Big Data To Knowedge (BD2K) learning for new audiences in bioinformatics, medical informatics and biomedical applications; 2) use active- learning to greatly increase conceptual understanding and real-world problem-solving ability; 3) directly measure learning effectiveness; and 4) boost the number of students that successfully complete BD2K courses. Tailoring the core concepts for BD2K success to teach diverse biomedical audiences is crucial both because these interdisciplinary concepts are a key barrier to entry, and because they are vital for real-world BD2K problem-solving ability. The UCLA/UCSD project team will: 1) provide an open, online repository where BD2K instructors worldwide can find, author, and share peer-reviewed active-learning exercises such as concept tests (already over 600), and immediately use them in class (with students answering with their smartphones or laptops); 2) catalyze the development, usage and validation of candidate BD2K concept inventories for rigorously measuring learning gains, via an accelerated approach of open- response concept testing and online data collection; 3) provide BD2K instructors a collaborative, peer-reviewed sharing and remixing platform for active-learning materials such as algorithm projects, hands-on data mining projects (via convenient "cloud projects"), exercises and problems, as well as "courselet" recording tools that automatically record video and audio on the instructor's laptop while they teach; 4) provide students anywhere free online courselets each about one key BD2K concept, consisting of brief videos tightly integrated with concept tests and all the active- learning exercises described above, and designed as an online persistent-learning community unified by concepts, in which students learn from the community's consolidated error models (common errors for a specific BD2K concept), effective remediations and counter-examples for each error model. Testing of this instructional approach for 3 years has doubled successful student completions of a BD2K methods course at UCLA, by reducing attrition, while simultaneously increasing conceptual understanding (mean exam scores). This approach will also be disseminated by: 1) pilot projects with BD2K instructors at UCLA and partner institutions, with detailed evaluation studies to identify critical success factors; 2) workshops (both online and onsite) for training instructors how to teach effectively with these tools in their BD2K courses; 3 online services and courselets.
描述(由申请人提供):拟议项目将为教师和学生创建在线服务,教学材料共享和培训,以1)为生物信息学,医学信息学和生物医学应用领域的新受众扩展和定制大数据知识(BD 2K)学习; 2)使用主动学习来大大提高概念理解和解决现实世界问题的能力; 3)直接衡量学习效果; 4)提高成功完成BD 2K课程的学生数量。定制BD 2K成功的核心概念来教授不同的生物医学受众是至关重要的,因为这些跨学科的概念是进入的关键障碍,也因为它们对现实世界的BD 2K解决问题的能力至关重要。UCLA/UCSD项目团队将:1)提供一个开放的在线存储库,全球的BD 2K教师可以在其中查找、创作和分享同行评审的主动学习练习,如概念测试(已经超过600),并立即在课堂上使用它们(学生用智能手机或笔记本电脑回答); 2)通过开放响应概念测试和在线数据收集的加速方法,促进候选BD 2K概念清单的开发、使用和验证,以严格衡量学习成果; 3)为BD 2K教师提供一个协作的、同行评审的共享和混音平台,用于主动学习材料,如算法项目、动手数据挖掘项目(通过方便的“云项目”),练习和问题,以及“courselet”录音工具,自动录制视频和音频在教师的笔记本电脑,而他们教; 4)为学生提供任何地方的免费在线课程,每个课程都是关于一个关键的BD 2K概念,包括与概念测试和上述所有主动学习练习紧密结合的简短视频,并被设计为通过概念统一的在线持续学习社区,学生可以从社区的统一错误模型(特定BD 2K概念的常见错误),有效的补救措施和每个错误模型的反例中学习。这种教学方法的测试3年来增加了一倍,成功的学生完成BD 2K方法课程在加州大学洛杉矶分校,通过减少摩擦,同时增加概念的理解(平均考试成绩)。这种方法还将通过以下方式传播:1)与加州大学洛杉矶分校和合作机构的BD 2K教师开展试点项目,并进行详细的评估研究,以确定关键的成功因素; 2)培训教师如何在BD 2K课程中使用这些工具进行有效教学的研讨会(在线和现场); 3在线服务和课程集。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Lee其他文献
Christopher Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Lee', 18)}}的其他基金
The BD2K Concept Network: open sharing of active-learning and tools online
BD2K 概念网络:在线主动学习和工具的开放共享
- 批准号:
8830165 - 财政年份:2014
- 资助金额:
$ 21.52万 - 项目类别:
相似海外基金
Big Data Analytics: Optimization Models and Algorithms with Applications in Smart Food Supply Chains and Networks
大数据分析:优化模型和算法在智能食品供应链和网络中的应用
- 批准号:
RGPIN-2020-06792 - 财政年份:2022
- 资助金额:
$ 21.52万 - 项目类别:
Discovery Grants Program - Individual
Large Systems and Big Data: Models, Tools, Analysis, and Algorithms
大型系统和大数据:模型、工具、分析和算法
- 批准号:
RGPIN-2020-04075 - 财政年份:2022
- 资助金额:
$ 21.52万 - 项目类别:
Discovery Grants Program - Individual
Algorithms and Tools for Big Data Analysis and Automated Real Time Optimal or Near Optimal Decision Making for Industrial Systems
用于工业系统大数据分析和自动实时最佳或接近最佳决策的算法和工具
- 批准号:
RGPIN-2017-05785 - 财政年份:2022
- 资助金额:
$ 21.52万 - 项目类别:
Discovery Grants Program - Individual
Novel Learning-Based Visual Algorithms and Fusion Methods for High-Dimensional/Multi-Modality Big Data
基于学习的新型高维/多模态大数据视觉算法和融合方法
- 批准号:
RGPIN-2022-02948 - 财政年份:2022
- 资助金额:
$ 21.52万 - 项目类别:
Discovery Grants Program - Individual
(Re)designing Clustering Algorithms for Big Data
(重新)设计大数据聚类算法
- 批准号:
RGPIN-2017-05617 - 财政年份:2022
- 资助金额:
$ 21.52万 - 项目类别:
Discovery Grants Program - Individual
NCS-FO: Connectome mapping algorithms with application to community services for big data neuroscience
NCS-FO:连接组映射算法及其应用于大数据神经科学社区服务
- 批准号:
2203524 - 财政年份:2021
- 资助金额:
$ 21.52万 - 项目类别:
Standard Grant
Big Data Analytics: Optimization Models and Algorithms with Applications in Smart Food Supply Chains and Networks
大数据分析:优化模型和算法在智能食品供应链和网络中的应用
- 批准号:
RGPIN-2020-06792 - 财政年份:2021
- 资助金额:
$ 21.52万 - 项目类别:
Discovery Grants Program - Individual
Exploring Novel Mathematical Models and Efficient Algorithms to Discover Periodic Spatial Patterns in Irregular Spatiotemporal Big Data
探索新颖的数学模型和高效算法以发现不规则时空大数据中的周期性空间模式
- 批准号:
21K12034 - 财政年份:2021
- 资助金额:
$ 21.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A comprehensive study of big data clustering algorithms
大数据聚类算法综合研究
- 批准号:
571110-2018 - 财政年份:2021
- 资助金额:
$ 21.52万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
(Re)designing Clustering Algorithms for Big Data
(重新)设计大数据聚类算法
- 批准号:
RGPIN-2017-05617 - 财政年份:2021
- 资助金额:
$ 21.52万 - 项目类别:
Discovery Grants Program - Individual