Supplement to R01 Titled: Mechanosensing in the Bone Lacunar-Canalicular System
R01 的补充,标题为:骨腔隙-小管系统中的机械传感
基本信息
- 批准号:9298122
- 负责人:
- 金额:$ 6.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-25 至 2020-03-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAtomic Force MicroscopyAttenuatedAwardBindingBiological AssayBiological ModelsBone TissueCalcium SignalingCell Adhesion MoleculesCell membraneCell physiologyCellsControlled EnvironmentCuesDataDevelopmentEnvironmentExhibitsFiberFluorescence Recovery After PhotobleachingGene ExpressionHealthHeparan Sulfate ProteoglycanHeparitin SulfateHumanImageIn SituIn VitroIntegrinsInterventionKnowledgeLeadLimb structureLiquid substanceMaintenanceMammalian CellMapsMeasuresMechanical StimulationMechanicsMembraneMineralsModelingMolecularMusOsteocytesOsteogenesisOsteoporosisPathologyPatientsPharmacologic SubstanceProcessPropertyResearchRoleSchwartz-Jampel SyndromeSideSignal TransductionStimulusStructureSystemTail SuspensionTestingTissuesTracerVelocimetriesWorkbasebonedensityexercise regimenexperienceextracellularfluid flowin vivomalemathematical abilitymouse modelnovelnovel strategiesperlecanresponsesensorskeletaltibiatool
项目摘要
DESCRIPTION (provided by applicant): Osteocytes are critical to the maintenance of tissue quality and mechanical integrity of bone. As the primary mechanosensing cells, osteocytes orchestrate bone's adaptation processes under mechanical cues such as load-induced fluid flow. However, the in vivo mechanisms by which osteocytes, deeply embedded in mineralized matrix, detect and transduce mechanical signals remain elusive. Filling this knowledge gap is essential to the development of new osteoporosis treatments that exploit bone's intrinsic sensitivity to mechanical loading (a potent anabolic factor). Recent studies have found a fibrous pericellular matrix (PCM) that spans the entire fluid annulus (~80nm) within the lacunar-canalicular system (LCS) and tethers the cell processes to the canalicular wall matrix. Evidence increasingly suggests that these PCM tethering fibers act as mechanical sensors, capturing fluid drag force and initiating mechanotransduction cascades in osteocytes. However, rigorous testing of this concept has been hindered by a lack of quantitative tools for measuring the PCM ultrastructure and by the scarcity of data regarding PCM composition. Breakthroughs from our previous award cycle have overcome these barriers, allowing us to precisely define the functional roles of the PCM in bone. First, we invented a tracer velocimetry approach based on fluorescence recovery after photobleaching (FRAP) to quantify osteocytic PCM in intact bone. Second, we identified perlecan/HSPG2, a large heparan sulfate (HS) proteoglycan, to be an essential structural component of the PCM. Using a perlecan-deficient mouse model that mimics human Schwartz-Jampel syndrome (SJS) we discovered that perlecan deficiency results in not only decreased PCM fiber density but also attenuated responses to in vivo loading and unloading. These preliminary studies formed the cornerstone of our hypothesis that the osteocytic PCM regulates bone's adaptation to mechanical cues through mechanosensing in the LCS, which will be tested at the tissue, cellular, and molecular levels in the following three specific aims: 1) Quantify the effects of PCM alterations on bone adaptation to mechanical cues in vivo; 2) Quantify the effects of PCM alterations on osteocyte mechanosensing ex vivo; 3) Determine the mechanisms by which PCM perlecan forms functional mechanosensing tethers in the LCS in vitro. The proposed studies are important because PCM is the critical interface between osteocytes and the extracellular environment. Identifying the functional roles of the osteocytic PCM and one of its major components, perlecan, in bone adaptation could lead to the development of new osteoporosis treatments that exploit bone's intrinsic sensitivity to mechanical stimuli, a potent non- pharmaceutical factor in promoting bone formation. These studies will also advance our knowledge of the fundamental functions of the PCM, a uniquely functioning but overlooked structure found in nearly all mammalian cells including osteocytes.
描述(申请人提供):骨细胞对维持骨骼的组织质量和机械完整性至关重要。作为主要的机械传感细胞,骨细胞在力学信号(如载荷诱导的流体流动)下协调骨的适应过程。然而,深埋在矿化基质中的骨细胞在体内检测和传递机械信号的机制仍然不清楚。填补这一知识空白对于开发新的骨质疏松症治疗方法至关重要,这种治疗方法利用骨骼对机械负荷(一种有效的合成代谢因素)的内在敏感性。最近的研究发现了一种纤维性细胞周围基质(PCM),它横跨腔隙-小管系统(LCS)内的整个液体环(~80 nm),并将细胞突起拴在小管壁基质上。越来越多的证据表明,这些PCM系留纤维作为机械传感器,捕捉流体阻力,并在骨细胞中启动机械转导级联。然而,由于缺乏测量相变材料超微结构的定量工具,以及缺乏关于相变材料成分的数据,对这一概念的严格测试受到了阻碍。我们上一个奖项周期的突破克服了这些障碍,使我们能够准确地定义PCM在骨骼中的功能角色。首先,我们发明了一种基于光漂白后荧光恢复(FRAP)的示踪测速方法来定量完整骨中的骨细胞PCM。其次,我们确定Perlecan/HSPG2是一种大的硫酸乙酰肝素(HS)蛋白多糖,是PCM的重要结构成分。使用模拟人类Schwartz-Jampel综合征(SJS)的Perlecan缺乏的小鼠模型,我们发现Perlecan缺乏不仅导致PCM纤维密度降低,而且还减弱了对体内加载和卸载的反应。这些初步研究构成了我们假设的基石,即骨细胞PCM通过在LCS中的机械传感来调节骨对机械提示的适应,这将在组织、细胞和分子水平进行以下三个具体目标的测试:1)在体内量化PCM改变对骨对机械提示的适应的影响;2)在体外定量PCM改变对骨细胞机械感知的影响;3)确定PCM perlecan在体外LCS中形成功能性机械传感系链的机制。提出的研究很重要,因为PCM是骨细胞和细胞外环境之间的关键界面。确定骨细胞PCM及其主要成分之一Perlecan在骨适应中的功能作用可能会导致开发新的骨质疏松症治疗方法,利用骨骼对机械刺激的内在敏感性,机械刺激是促进骨形成的一种强大的非药物因素。这些研究还将增进我们对PCM基本功能的了解,PCM是一种独特的功能但被忽视的结构,几乎在包括骨细胞在内的所有哺乳动物细胞中都存在。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MARY C FARACH-CARSON其他文献
MARY C FARACH-CARSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MARY C FARACH-CARSON', 18)}}的其他基金
Functional Biointegration of Bioengineered Salivary Tissues in Irradiated Animal Models
生物工程唾液组织在辐射动物模型中的功能生物整合
- 批准号:
10706557 - 财政年份:2022
- 资助金额:
$ 6.49万 - 项目类别:
Functional Biointegration of Bioengineered Salivary Tissues in Irradiated Animal Models
生物工程唾液组织在辐射动物模型中的功能生物整合
- 批准号:
10569404 - 财政年份:2022
- 资助金额:
$ 6.49万 - 项目类别:
Cell-Based Therapy in Minipig Model of Radiation-Induced Xerostomia
小型猪辐射诱发口干症模型的细胞疗法
- 批准号:
10214978 - 财政年份:2020
- 资助金额:
$ 6.49万 - 项目类别:
Functional Assembly of Salivary Cells to Relieve Xerostomia
唾液细胞的功能组装以缓解口干症
- 批准号:
8390897 - 财政年份:2012
- 资助金额:
$ 6.49万 - 项目类别:
Functional Assembly of Salivary Cells to Relieve Xerostomia
唾液细胞的功能组装以缓解口干症
- 批准号:
8512701 - 财政年份:2012
- 资助金额:
$ 6.49万 - 项目类别:
Functional Assembly of Salivary Cells to Relieve Xerostomia
唾液细胞的功能组装以缓解口干症
- 批准号:
8878217 - 财政年份:2012
- 资助金额:
$ 6.49万 - 项目类别:
Functional Assembly of Salivary Cells to Relieve Xerostomia
唾液细胞的功能组装以缓解口干症
- 批准号:
8815356 - 财政年份:2012
- 资助金额:
$ 6.49万 - 项目类别:
Functional Assembly of Salivary Cells to Relieve Xerostomia
唾液细胞的功能组装以缓解口干症
- 批准号:
8668772 - 财政年份:2012
- 资助金额:
$ 6.49万 - 项目类别:
PERLECAN AND HEPARANASE IN CARTILAGE GROWTH AND HEALING
PERLECAN 和乙酰肝素酶在软骨生长和愈合中的作用
- 批准号:
7959490 - 财政年份:2009
- 资助金额:
$ 6.49万 - 项目类别:
ELECTROSPUN COLLAGEN SCAFFOLDS FOR 3D CELLULAR MODELS FOR ANTI-NEOPLASTIC AGENTS
用于抗肿瘤药物 3D 细胞模型的电纺胶原蛋白支架
- 批准号:
7960178 - 财政年份:2009
- 资助金额:
$ 6.49万 - 项目类别:
相似海外基金
Pushing the envelope: atomic force microscopy imaging of the bacterial outer membrane during growth and division
挑战极限:生长和分裂过程中细菌外膜的原子力显微镜成像
- 批准号:
BB/X007669/1 - 财政年份:2024
- 资助金额:
$ 6.49万 - 项目类别:
Research Grant
Nanoscopic elucidation of dynamic behavior of RNA viral nucleocapsid proteins using high-speed atomic force microscopy (HS-AFM)
使用高速原子力显微镜 (HS-AFM) 纳米级阐明 RNA 病毒核衣壳蛋白的动态行为
- 批准号:
24K18449 - 财政年份:2024
- 资助金额:
$ 6.49万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unravelling dengue virus structural dynamics and conformational changes using high-speed atomic force microscopy
使用高速原子力显微镜揭示登革热病毒结构动力学和构象变化
- 批准号:
24K18450 - 财政年份:2024
- 资助金额:
$ 6.49万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
State-of-the-art atomic force microscopy facilities for South Australia
南澳大利亚最先进的原子力显微镜设施
- 批准号:
LE240100129 - 财政年份:2024
- 资助金额:
$ 6.49万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Atomic scale reactivity of small islands of a bimetallic alloy on ceria to small molecules investigated by ultrahigh resolution atomic force microscopy
通过超高分辨率原子力显微镜研究二氧化铈上双金属合金小岛对小分子的原子尺度反应性
- 批准号:
24K01350 - 财政年份:2024
- 资助金额:
$ 6.49万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Pushing the envelope: atomic force microscopy imaging of the bacterial outer membrane during growth and division
挑战极限:生长和分裂过程中细菌外膜的原子力显微镜成像
- 批准号:
BB/X00760X/1 - 财政年份:2024
- 资助金额:
$ 6.49万 - 项目类别:
Research Grant
A New Nano Tip Fabrication Technique for Atomic Force Microscopy
原子力显微镜的新型纳米尖端制造技术
- 批准号:
DP230100637 - 财政年份:2023
- 资助金额:
$ 6.49万 - 项目类别:
Discovery Projects
Magnetic imaging by the locally induced anomalous Nernst effect using atomic force microscopy
使用原子力显微镜通过局部诱发的异常能斯特效应进行磁成像
- 批准号:
23K04579 - 财政年份:2023
- 资助金额:
$ 6.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Characterization of super adhesive aerosols on the basis of individual particle analysis using atomic force microscopy
基于原子力显微镜单个颗粒分析的超粘性气溶胶表征
- 批准号:
22KJ1464 - 财政年份:2023
- 资助金额:
$ 6.49万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Using atomic force microscopy to explore the processes and re-organisations that occur during bacterial growth and division and how these are influenc
使用原子力显微镜探索细菌生长和分裂过程中发生的过程和重组以及它们如何影响细菌
- 批准号:
2887441 - 财政年份:2023
- 资助金额:
$ 6.49万 - 项目类别:
Studentship














{{item.name}}会员




