Exploring the Role of Dynamic Chromatin Occupancy in Transcriptional Regulation
探索动态染色质占据在转录调控中的作用
基本信息
- 批准号:9082781
- 负责人:
- 金额:$ 39.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-04-01 至 2020-03-31
- 项目状态:已结题
- 来源:
- 关键词:Binding ProteinsBiological AssayBiological ProcessCell CycleCell Cycle ProgressionCell ProliferationCell divisionCell physiologyCellsChromatinCollecting CellComplexComputer SimulationComputing MethodologiesDNA BindingDNase I hypersensitive sites sequencingDataDeoxyribonucleasesDevelopmentDiabetes MellitusElementsEtiologyEukaryotaEventExhibitsExperimental ModelsFoundationsGenesGeneticGenetic TranscriptionGenomeGenomicsGoalsHigh-Throughput Nucleotide SequencingHumanKnowledgeLeadLearningLinkLocationMalignant NeoplasmsMeasurementMeasuresMethodsModelingMonitorNon-linear ModelsNucleosomesNucleotidesOrganismPositioning AttributeProcessProductionProteinsRegulatory ElementResearchResolutionRoleSaccharomyces cerevisiaeSaccharomycetalesSamplingSeriesSignal TransductionStatistical MethodsThermodynamicsTimeTranscriptTranscriptional RegulationVariantYeastsbasecell growthchromatin immunoprecipitationchromatin remodelingclinically relevantcost effectivedevelopmental diseasefundamental researchgenome sequencinggenome-wideinnovationinsightlearning strategymutantnovelnucleasepredictive modelingprogramspromoterprotein complexpublic health relevanceresearch studyresponsetranscription factorwhole genome
项目摘要
DESCRIPTION (provided by applicant): Though the genome's sequence is essentially fixed, its state may be constantly changing inside a cell. Two aspects of this changing state are the specific arrangement of myriad protein complexes along the genome in the form of chromatin, and the current rate of transcript production for each gene. A fundamental research objective is to understand the relationship between these two, and in particular, how transcript production rates (TxPRs) are influenced by genome-wide chromatin state. The goal of this proposal is to develop models that are capable of predicting a cell's genome-wide transcription state from knowledge of its genome-wide chromatin state. To build such models requires simultaneously profiling a cell's genome-wide chromatin state and transcription state at different times or under
different conditions: Observing how the two change together, particularly in the context of directed perturbation, provides the statistical leverage needed to build predictive models that can provide causal insight. In this proposal, models will be developed and validated by monitoring chromatin and transcription in budding yeast as they progress through the cell cycle, a temporal series of highly regulated events controlling cell proliferation, aberrations of which can lead to cancer. Owing to the complexity of this challenge, yeast is used as a starting point because of its compact genome and genetic tractability, but we anticipate our methods will also be applicable in more complex organisms, including human. One major obstacle is that state-of-the-art chromatin immunoprecipitation (ChIP) methods for assaying chromatin state require a separate experiment not only for each time point and experimental condition, but also for each of the 100s-1000s of types of proteins binding along the genome. To overcome this hurdle, this proposal describes a novel method for efficiently learning quantitative genome-wide chromatin occupancy profiles (GCOPs) using nuclease-digested chromatin at single-base resolution. The proposed method enables the comprehensive determination of quantitative chromatin occupancy of transcription factors, nucleosomes, and other DNA-binding factors across the entire genome without requiring a separate experiment for each. Producing GCOPs in conjunction with high- resolution measurements of TxPRs will allow the development of sophisticated, mechanistically interpretable models that predict transcript production rates as a function of chromatin state. The proposed research will result in (i) efficient new methods for producing quantitative GCOPs that will be applicable in any organism with a sequenced genome; (ii) GCOPs from budding yeast as they progress through the cell cycle, revealing for the first time in any organism how genome-wide chromatin occupancy changes over the course of the cell cycle; (iii) characterization of how genome-wide chromatin changes are linked to changes in TxPRs, not only in wild-type yeast, but also under a wide range of genetic and genomic perturbations; and (iv) models learned from all these data that can predict TxPRs on the basis of chromatin occupancy, providing mechanistic insight into how the cell-cycle-regulated transcription program is influenced by its changing chromatin state.
描述(由申请人提供):虽然基因组的序列基本上是固定的,但其状态可能在细胞内不断变化。这种变化状态的两个方面是无数蛋白质复合物沿着基因组以染色质形式的特殊排列,以及每个基因的转录产物的当前速率。一个基本的研究目标是了解这两者之间的关系,特别是,转录本生产率(TxPR)是如何在全基因组染色质状态的影响。该提案的目标是开发能够从其全基因组染色质状态的知识预测细胞的全基因组转录状态的模型。为了建立这样的模型,需要同时分析细胞在不同时间或更短时间内的全基因组染色质状态和转录状态。
不同的条件:观察两者如何一起变化,特别是在定向扰动的背景下,提供了建立预测模型所需的统计杠杆,可以提供因果洞察力。在这项提议中,将通过监测芽殖酵母中的染色质和转录来开发和验证模型,因为它们在细胞周期中进展,这是一系列控制细胞增殖的高度调节事件,其畸变可能导致癌症。由于这一挑战的复杂性,酵母因其紧凑的基因组和遗传易处理性而被用作起点,但我们预计我们的方法也将适用于更复杂的生物体,包括人类。一个主要的障碍是,用于测定染色质状态的现有技术的染色质免疫沉淀(ChIP)方法不仅需要针对每个时间点和实验条件进行单独的实验,而且还需要针对沿着基因组沿着结合的100 - 1000种类型的蛋白质中的每一种进行单独的实验。为了克服这一障碍,该提案描述了一种新的方法,用于在单碱基分辨率下使用核酸酶消化的染色质有效地学习定量全基因组染色质占用谱(GCOP)。所提出的方法能够全面测定整个基因组中转录因子、核小体和其他DNA结合因子的定量染色质占有率,而不需要对每个因子进行单独的实验。结合TxPR的高分辨率测量产生GCOP将允许开发复杂的、机械上可解释的模型,该模型预测作为染色质状态的函数的转录物产生速率。拟议的研究将导致(i)有效的新方法,用于生产定量GCOP,适用于任何具有测序基因组的生物体;(ii)来自芽殖酵母的GCOP,因为它们在细胞周期中的进展,首次揭示了任何生物体的全基因组染色质占有率如何在细胞周期过程中变化;(iii)不仅在野生型酵母中,而且在广泛的遗传和基因组扰动下,全基因组染色质变化如何与TxPR的变化相关联的表征;以及(iv)从所有这些数据中学习的模型,其可以基于染色质占有率预测TxPR,从而提供对细胞周期调节的转录程序如何受到其改变的染色质状态的影响的机理性洞察。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander J Hartemink其他文献
Alexander J Hartemink的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander J Hartemink', 18)}}的其他基金
Methods to Elucidate the Dynamics of Transcriptional Regulation and Chromatin
阐明转录调控和染色质动力学的方法
- 批准号:
10205905 - 财政年份:2021
- 资助金额:
$ 39.25万 - 项目类别:
Methods to Elucidate the Dynamics of Transcriptional Regulation and Chromatin
阐明转录调控和染色质动力学的方法
- 批准号:
10405481 - 财政年份:2021
- 资助金额:
$ 39.25万 - 项目类别:
Methods to Elucidate the Dynamics of Transcriptional Regulation and Chromatin
阐明转录调控和染色质动力学的方法
- 批准号:
10618355 - 财政年份:2021
- 资助金额:
$ 39.25万 - 项目类别:
Bioinformatics and Computational Biology Training Program
生物信息学与计算生物学培训项目
- 批准号:
8501519 - 财政年份:2005
- 资助金额:
$ 39.25万 - 项目类别:
Bioinformatics and Computational Biology Training Program
生物信息学与计算生物学培训项目
- 批准号:
8289471 - 财政年份:2005
- 资助金额:
$ 39.25万 - 项目类别:
Bioinformatics and Computational Biology Training Program
生物信息学与计算生物学培训项目
- 批准号:
8880238 - 财政年份:2005
- 资助金额:
$ 39.25万 - 项目类别:
Bioinformatics and Computational Biology Training Program
生物信息学与计算生物学培训项目
- 批准号:
8691868 - 财政年份:2005
- 资助金额:
$ 39.25万 - 项目类别:
相似海外基金
Establishment of a new biological assay using Hydra nematocyst deployment
利用水螅刺丝囊部署建立新的生物测定方法
- 批准号:
520728-2017 - 财政年份:2017
- 资助金额:
$ 39.25万 - 项目类别:
University Undergraduate Student Research Awards
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
10368760 - 财政年份:2017
- 资助金额:
$ 39.25万 - 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
10669539 - 财政年份:2017
- 资助金额:
$ 39.25万 - 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
9570142 - 财政年份:2017
- 资助金额:
$ 39.25万 - 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
9915803 - 财政年份:2017
- 资助金额:
$ 39.25万 - 项目类别:
COVID-19 Supplemental work: POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER).
COVID-19 补充工作:用于确定组织特异性吸收电离辐射剂量的护理点生物测定(生物剂量计)。
- 批准号:
10259999 - 财政年份:2017
- 资助金额:
$ 39.25万 - 项目类别:
Drug discovery based on a new biological assay system using Yeast knock-out strain collection
基于使用酵母敲除菌株收集的新生物测定系统的药物发现
- 批准号:
21580130 - 财政年份:2009
- 资助金额:
$ 39.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Machine learning for automatic gene annotation using high-throughput biological assay data
使用高通量生物测定数据进行自动基因注释的机器学习
- 批准号:
300985-2004 - 财政年份:2005
- 资助金额:
$ 39.25万 - 项目类别:
Postdoctoral Fellowships
Machine learning for automatic gene annotation using high-throughput biological assay data
使用高通量生物测定数据进行自动基因注释的机器学习
- 批准号:
300985-2004 - 财政年份:2004
- 资助金额:
$ 39.25万 - 项目类别:
Postdoctoral Fellowships














{{item.name}}会员




