Methods to Elucidate the Dynamics of Transcriptional Regulation and Chromatin
阐明转录调控和染色质动力学的方法
基本信息
- 批准号:10618355
- 负责人:
- 金额:$ 42.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsBiologicalBiological AssayCell CycleCell ProliferationCell divisionCell physiologyCellsChromatinComplexComputing MethodologiesDataDiabetes MellitusEnvironmentEventGenesGenetic TranscriptionGenomeGenomicsGoalsHormonesHumanKnowledgeLinkMalignant NeoplasmsMethodsModelingMonitorOrganismProcessProductionRegulationResearchSaccharomycetalesSeriesSignal TransductionStatistical MethodsTechnologyTestingTimeTranscriptTranscriptional RegulationYeastsbiological adaptation to stresscell growthchromatin remodelingclinically relevantdevelopmental diseasedynamic systemenvironmental stressorfundamental researchgenetic straingenome-wideinsightmutantpredictive modelingprogramsprotein complexresponsetool
项目摘要
Project Summary
Within a cell, though the sequence of the genome is essentially fixed, its state is constantly changing. Two aspects
of this changing state at a given point in time are the specific arrangement of myriad protein complexes along the
genome in the form of chromatin, and the rate of transcript production for each gene. Each of these influences
the other, and each also changes in response to the cell's internal or external environment, setting up a complex
dynamical system that undergirds cellular function and adaptation. A fundamental research objective is to
understand the dynamic relationship between these two, genome-wide: how transcription is influenced by the
chromatin landscape, and how the chromatin landscape is influenced by transcription.
A central goal of our research group is to develop models capable of predicting a cell's genome-wide transcription
state from knowledge of its genome-wide chromatin state. To build such models requires simultaneously profiling
a cell's genome-wide chromatin and transcription states at different times and under different conditions:
Observing how the two change together as they respond to a changing environment, particularly in the context
of directed perturbation, provides the statistical leverage needed to build predictive models capable of providing
causal and mechanistic interpretations. Our models will initially be developed and validated by monitoring
dynamic chromatin occupancy and transcription in budding yeast under various conditions: as they progress
through the cell cycle (a temporal series of highly regulated events controlling cell proliferation, aberrations of
which can lead to cancer), in response to environmental stresses, and across genetic strains, including mutants
that disrupt chromatin remodeling or TF expression. We also have access to massive amounts of data assaying the
dynamics of transcription and chromatin in the context of human hormone response and chromatin remodeling.
The distinct yeast and human contexts offer an opportunity to develop methods that are broadly applicable
across this spectrum and provide mechanistic insight into foundational questions in genomic regulation.
The proposed research will produce computational and statistical methods based on Bayesian probabilistic
graphical modeling approaches that can (1) more accurately, comprehensively, and scalably profile both chromatin
occupancy and transcriptional regulation as they change over time, and (2) infer mechanistic links between the
two that elucidate how the cell dynamically regulates its genome-wide transcription program and chromatin
organization in response to changing conditions.
More generally, as advanced experimental technologies and assays continue to be pioneered at a rapid pace, we
need to concomitantly develop sophisticated new computational and statistical methods, not merely to store
or process the ever-growing amounts of data, but to formulate models that provide mechanistically grounded
explanations of the data, to develop algorithms that use the data more effectively to reveal deeper biological
insight, and to make causal predictions that can be experimentally tested to advance our scientific understanding.
项目概要
在细胞内,虽然基因组的序列基本上是固定的,但其状态却在不断变化。两个方面
在给定时间点这种状态变化的原因是无数蛋白质复合物沿着
染色质形式的基因组,以及每个基因的转录产生率。这些影响中的每一个
另一个,每个也根据细胞的内部或外部环境而变化,建立一个复杂的
支撑细胞功能和适应的动力系统。一个基本研究目标是
了解这两者之间在全基因组范围内的动态关系:转录如何受到基因组的影响
染色质景观,以及染色质景观如何受到转录的影响。
我们研究小组的中心目标是开发能够预测细胞全基因组转录的模型
根据其全基因组染色质状态的知识来确定状态。要构建此类模型需要同时进行分析
细胞的全基因组染色质和转录在不同时间和不同条件下的状态:
观察两者在应对不断变化的环境时如何共同变化,特别是在上下文中
定向扰动,提供了构建预测模型所需的统计杠杆,能够提供
因果和机械解释。我们的模型最初将通过监控来开发和验证
各种条件下出芽酵母的动态染色质占据和转录:随着它们的进展
通过细胞周期(控制细胞增殖、细胞畸变的一系列高度调控的事件)
可能导致癌症)、对环境压力的反应以及跨遗传菌株(包括突变体)
破坏染色质重塑或 TF 表达。我们还可以获得大量数据来分析
人类激素反应和染色质重塑背景下转录和染色质的动态。
酵母和人类的不同环境为开发广泛适用的方法提供了机会
跨越这个范围,并为基因组调控的基本问题提供机制见解。
拟议的研究将产生基于贝叶斯概率的计算和统计方法
图形建模方法可以(1)更准确、更全面、更大规模地分析染色质
占据和转录调控随着时间的推移而变化,并且(2)推断转录调控之间的机制联系
两个阐明细胞如何动态调节其全基因组转录程序和染色质
组织以应对不断变化的条件。
更一般地说,随着先进的实验技术和分析方法继续快速发展,我们
需要同时开发复杂的新计算和统计方法,而不仅仅是存储
或处理不断增长的数据量,但要制定提供机械基础的模型
对数据的解释,开发更有效地使用数据来揭示更深入的生物学的算法
洞察力,并做出可以通过实验测试的因果预测,以增进我们的科学理解。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Profiling the quantitative occupancy of myriad transcription factors across conditions by modeling chromatin accessibility data.
- DOI:10.1101/gr.272203.120
- 发表时间:2022-06
- 期刊:
- 影响因子:7
- 作者:Luo, Kaixuan;Zhong, Jianling;Safi, Alexias;Hong, Linda K.;Tewari, Alok K.;Song, Lingyun;Reddy, Timothy E.;Ma, Li;Crawford, Gregory E.;Hartemink, Alexander J.
- 通讯作者:Hartemink, Alexander J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander J Hartemink其他文献
Alexander J Hartemink的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander J Hartemink', 18)}}的其他基金
Methods to Elucidate the Dynamics of Transcriptional Regulation and Chromatin
阐明转录调控和染色质动力学的方法
- 批准号:
10205905 - 财政年份:2021
- 资助金额:
$ 42.86万 - 项目类别:
Methods to Elucidate the Dynamics of Transcriptional Regulation and Chromatin
阐明转录调控和染色质动力学的方法
- 批准号:
10405481 - 财政年份:2021
- 资助金额:
$ 42.86万 - 项目类别:
Exploring the Role of Dynamic Chromatin Occupancy in Transcriptional Regulation
探索动态染色质占据在转录调控中的作用
- 批准号:
9082781 - 财政年份:2016
- 资助金额:
$ 42.86万 - 项目类别:
Bioinformatics and Computational Biology Training Program
生物信息学与计算生物学培训项目
- 批准号:
8501519 - 财政年份:2005
- 资助金额:
$ 42.86万 - 项目类别:
Bioinformatics and Computational Biology Training Program
生物信息学与计算生物学培训项目
- 批准号:
8880238 - 财政年份:2005
- 资助金额:
$ 42.86万 - 项目类别:
Bioinformatics and Computational Biology Training Program
生物信息学与计算生物学培训项目
- 批准号:
8289471 - 财政年份:2005
- 资助金额:
$ 42.86万 - 项目类别:
Bioinformatics and Computational Biology Training Program
生物信息学与计算生物学培训项目
- 批准号:
8691868 - 财政年份:2005
- 资助金额:
$ 42.86万 - 项目类别:
相似海外基金
Defining the biological boundaries to sustain extant life on Mars
定义维持火星现存生命的生物边界
- 批准号:
DP240102658 - 财政年份:2024
- 资助金额:
$ 42.86万 - 项目类别:
Discovery Projects
Advanced Multiscale Biological Imaging using European Infrastructures
利用欧洲基础设施进行先进的多尺度生物成像
- 批准号:
EP/Y036654/1 - 财政年份:2024
- 资助金额:
$ 42.86万 - 项目类别:
Research Grant
Open Access Block Award 2024 - Marine Biological Association
2024 年开放获取区块奖 - 海洋生物学协会
- 批准号:
EP/Z532538/1 - 财政年份:2024
- 资助金额:
$ 42.86万 - 项目类别:
Research Grant
NSF/BIO-DFG: Biological Fe-S intermediates in the synthesis of nitrogenase metalloclusters
NSF/BIO-DFG:固氮酶金属簇合成中的生物 Fe-S 中间体
- 批准号:
2335999 - 财政年份:2024
- 资助金额:
$ 42.86万 - 项目类别:
Standard Grant
DESIGN: Driving Culture Change in a Federation of Biological Societies via Cohort-Based Early-Career Leaders
设计:通过基于队列的早期职业领袖推动生物协会联盟的文化变革
- 批准号:
2334679 - 财政年份:2024
- 资助金额:
$ 42.86万 - 项目类别:
Standard Grant
Collaborative Research: The Interplay of Water Condensation and Fungal Growth on Biological Surfaces
合作研究:水凝结与生物表面真菌生长的相互作用
- 批准号:
2401507 - 财政年份:2024
- 资助金额:
$ 42.86万 - 项目类别:
Standard Grant
REU Site: Modeling the Dynamics of Biological Systems
REU 网站:生物系统动力学建模
- 批准号:
2243955 - 财政年份:2024
- 资助金额:
$ 42.86万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411529 - 财政年份:2024
- 资助金额:
$ 42.86万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411530 - 财政年份:2024
- 资助金额:
$ 42.86万 - 项目类别:
Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412551 - 财政年份:2024
- 资助金额:
$ 42.86万 - 项目类别:
Standard Grant














{{item.name}}会员




