(NCI) Developing an Intermediate Energy Linac for Robotic Radiotherapy

(NCI) 开发用于机器人放射治疗的中间能量直线加速器

基本信息

  • 批准号:
    9247262
  • 负责人:
  • 金额:
    $ 4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-06-19 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): Robotic radiotherapy using extensively non-coplanar beams has been shown effective to significantly improve radiation therapy dosimetry that leads to improved treatment outcome. However, current implementation of this technique by CyberKnife is inefficient and not optimal dosimetrically. This has severely limited both the number of patients eligible for robotic radiotherapy and the achievable clinical outcome for those who have been treated. In order to overcome these limitations, we propose to develop a novel robotic radiotherapy system that can efficiently utilize the full potential of the non-coplanar delivery space to treat the majority of radiotherapy patients. Innovation: The proposed system is highly innovative in the following aspect: 1) Integrated beam orientation and fluence optimization. 2) Significantly more compact linac to allow posterior beams. 3) Flexible field sizes and MLC resolution to efficiently treat most target sizes. 4) Integrated volumetric imaging system. This project is proposed to design a hardware platform materializing such robotic radiotherapy system. In order to reduce the gantry size, both the linac length and the distance between the source and the MLC need to be significantly reduced. We propose to design a new 2 MV source to reduce linac length and provide the required dose rate for treatment. The physical MLC leaf thickness cannot be substantially thinner than 1 mm. To achieve a high MLC resolution at the treatment distance, a spacer is used in CyberKnife between the primary collimator and the MLC, increasing the gantry dimension. We propose to eliminate the spacer but vary the focus-to-tumor distances (FTD) to achieve desired field size and MLC resolution. This requires optimization in an enormous solution space, a capacity uniquely demonstrated by the 4p algorithm. Volumetric imaging has been an indispensable component of modern radiotherapy but unfortunately missing from existing robotic systems. The proposed new linac will be able to deliver kV imaging beams from the same 2 MV linac, which in combination with gantry or couch mounted imagers will allow volumetric imaging for more precise tumor targeting. Aims: 1: Prototypical design of the accelerator to produce 2 MV X-rays 2: Design incorporated imaging system 3: Develop a conceptual design for the entire clinical system Impact: Success of the Phase I project would lead to the design of the first 2 MV linear accelerator capable of producing a competitively high dose rate of >800 cGy/min at 100 cm and kV imaging beams for image guided radiotherapy. This paves the technical path to a new robotic radiotherapy system delivering radiation plans with dose conformality surpassing existing X-ray platforms. More importantly, the significantly increased field size, throughput and the volumetric imaging capacity would allow the new robotic system to compete for a much larger market, including that for conventional linacs, than the niche market CyberKnife currently commands.


项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Salime Boucher其他文献

Salime Boucher的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Salime Boucher', 18)}}的其他基金

Development of an ultra-high dose rate rotational linac for FLASH Radiotherapy
开发用于闪光放射治疗的超高剂量率旋转直线加速器
  • 批准号:
    10371984
  • 财政年份:
    2021
  • 资助金额:
    $ 4万
  • 项目类别:
Development of a versatile robotic radiation therapy system
多功能机器人放射治疗系统的开发
  • 批准号:
    9346324
  • 财政年份:
    2016
  • 资助金额:
    $ 4万
  • 项目类别:
(NCI) Developing an Intermediate Energy Linac for Robotic Radiotherapy
(NCI) 开发用于机器人放射治疗的中间能量直线加速器
  • 批准号:
    8906149
  • 财政年份:
    2015
  • 资助金额:
    $ 4万
  • 项目类别:

相似海外基金

Exploring the Potential Clinical Application of Pulse Arrival Time for Assessing Arterial Stiffness Using Machine Learning Algorithms
使用机器学习算法探索脉冲到达时间评估动脉僵硬度的潜在临床应用
  • 批准号:
    2649903
  • 财政年份:
    2022
  • 资助金额:
    $ 4万
  • 项目类别:
    Studentship
Implementing clinical decision support for improved outpatient neurorehabilitation post-stroke and spinal cord injury through the integration of wearable technology and deep learning algorithms.
通过集成可穿戴技术和深度学习算法,实施临床决策支持,以改善中风和脊髓损伤后的门诊神经康复。
  • 批准号:
    475572
  • 财政年份:
    2022
  • 资助金额:
    $ 4万
  • 项目类别:
    Studentship Programs
SCH: Heterogenous, dynamic synthetic data: From algorithms to clinical applications
SCH:异构动态合成数据:从算法到临床应用
  • 批准号:
    10559690
  • 财政年份:
    2022
  • 资助金额:
    $ 4万
  • 项目类别:
SCH: Heterogenous, dynamic synthetic data: From algorithms to clinical applications
SCH:异构动态合成数据:从算法到临床应用
  • 批准号:
    10437156
  • 财政年份:
    2022
  • 资助金额:
    $ 4万
  • 项目类别:
Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
  • 批准号:
    10277514
  • 财政年份:
    2021
  • 资助金额:
    $ 4万
  • 项目类别:
Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
  • 批准号:
    10462646
  • 财政年份:
    2021
  • 资助金额:
    $ 4万
  • 项目类别:
Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
  • 批准号:
    10631239
  • 财政年份:
    2021
  • 资助金额:
    $ 4万
  • 项目类别:
Adaptive randomized designs for cancer clinical trials by using integer algorithms and exact Monte Carlo methods
使用整数算法和精确蒙特卡罗方法进行癌症临床试验的自适应随机设计
  • 批准号:
    10329938
  • 财政年份:
    2021
  • 资助金额:
    $ 4万
  • 项目类别:
Adaptive randomized designs for cancer clinical trials by using integer algorithms and exact Monte Carlo methods
使用整数算法和精确蒙特卡罗方法进行癌症临床试验的自适应随机设计
  • 批准号:
    10405326
  • 财政年份:
    2021
  • 资助金额:
    $ 4万
  • 项目类别:
Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
  • 批准号:
    10809977
  • 财政年份:
    2021
  • 资助金额:
    $ 4万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了