Filtered Point Process Inference Framework for Modeling Neural Data
用于神经数据建模的过滤点过程推理框架
基本信息
- 批准号:9170395
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-30 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:Adrenal GlandsAlgorithmsAnimalsArchitectureBasic ScienceBehavioralBiological ProcessBrainCalciumCentral obesityClinicalCodeCollaborationsCommunitiesComplexComputer softwareConfidence IntervalsCorticotropinCoupledCushing SyndromeDataData AnalysesDiabetes MellitusDifferential EquationDiseaseEndocrine systemEtiologyEventFunctional disorderGoalsGonadal Steroid HormonesHormonalHormonesHumanHydrocortisoneImageInsulinInterventionLeast-Squares AnalysisLifeLightLinear ModelsLinkMachine LearningMeasurementMedicalMemoryMethodologyMethodsModelingMorphologic artifactsMusNatureNeuraxisNeuronsNeurosciencesNeurosciences ResearchNeurosecretory SystemsNoiseOsteoporosisParietal LobePhysiologic pulsePhysiologyPituitary GlandPopulationPopulation AnalysisProceduresProcessRecoveryResearchResolutionRodentSeriesSerumSignal TransductionSoftware ToolsSomatotropinStatistical MethodsStatistical ModelsStimulusStructureSystemTechniquesTestingThyroid HormonesTimeTime Series AnalysisTissuesTrainingUnited States National Institutes of HealthV1 neuronVisualVisual Perceptionarea striataawakebasecomputational neurosciencecomputerized data processingdesigndrug efficacydynamic systemhuman dataimprovedin vivomathematical algorithmmovieneural modelnovelopen sourcerelating to nervous systemresearch studysignal processingspatiotemporaltemporal measurementtooltwo-photonvisual cognitionvisual motor
项目摘要
ABSTRACT
Neuronal spike-trains and various other signals in the central nervous system have a discrete,
impulsive nature that is well characterized with point process statistical models. In several neuroscience
applications, such impulsive signals are transformed upon interaction with biological processes or
measurement artifacts, and are consequently observed as filtered point process data. The goal of this project
is to develop a principled statistical signal processing framework for filtered point processes with models and
algorithms for estimation and inference, and to apply these novel methodologies to experimental data from
rodent brain calcium imaging data and human neuroendocrine data. Our approach centers on a unified
framework for sparse representation and dynamical systems modeling of marked point process data arising in
neuroscience analyses. In addition to its novel statistical methodology, another major strength of our proposal
is the application of these methods to experimental data arising in fundamental neuroscience and clinical
problems, both to validate the new methods with real data and to investigate basic science questions related to
the central nervous system structural and functional organization. Large-scale two-photon calcium imaging, in
conjunction with spike-train deconvolution, will allow us to study the activity of over a thousand identified
neurons simultaneously with single-spike resolution in a behaving animal. This will allow us to elucidate with
high accuracy how the magnitude and spatial structure of signal and noise correlations across neurons vary
with stimuli or behavioral tasks. It will shed light on visual encoding in the rodent brain, and neuronal
architectures underlying visual perception and cognition, at an unprecedented spatiotemporal scale. Further,
our modeling of pulsatile hormone secretion will apply to the release of cortisol, gonadal steroids, insulin,
thyroid and growth hormones. Diseases linked to abnormal cortisol secretion include diabetes, visceral obesity
and osteoporosis, disturbed memory formation and life-threatening Addisonian crisis. Hence, understanding
and modeling the underlying impulsive nature of normal hormone release will aid our understanding of
pathological neuroendocrine states and improve the efficacy of drugs and other interventions for treatment of
hormonal disorders. Additionally, this project will combine Brown Lab’s computational expertise in point
process models with Sur Lab’s experimental expertise in neuronal calcium imaging, extending our ongoing
collaboration under the NIH Brain Initiative to developing novel neural population analysis techniques with
unprecedented detail at single-neuron, single-spike resolution. Our research is well poised to improve
significantly the state of the art and in computational and systems neuroscience tools and bridge together
components from the statistical learning, signal processing and computational neuroscience communities to
produce a unifying analytical framework for neural data analysis.
摘要
中枢神经系统中的神经元尖峰序列和各种其他信号具有离散的,
脉冲性质,用点过程统计模型很好地表征。在几个神经科学
在一些应用中,这样的脉冲信号在与生物过程相互作用时被变换,或者
测量伪影,并且因此被观察为过滤的点过程数据。这个项目的目标
是为具有模型的过滤点过程开发原则性统计信号处理框架,
算法的估计和推理,并将这些新的方法,以实验数据从
啮齿动物脑钙成像数据和人类神经内分泌数据。我们的方法集中在统一的
产生的标记点过程数据的稀疏表示和动态系统建模的框架
神经科学分析除了新颖的统计方法外,我们的建议的另一个主要优点是
是将这些方法应用于基础神经科学和临床
问题,既要用真实的数据验证新方法,又要研究与以下问题有关的基础科学问题:
中枢神经系统的结构和功能组织。大规模双光子钙成像,在
结合尖峰列车反卷积,将使我们能够研究超过一千个确定的活动,
神经元同时与单穗分辨率在一个行为的动物。这将使我们能够阐明
神经元之间信号和噪声相关性的幅度和空间结构如何变化的高精度
刺激或行为任务。它将揭示啮齿动物大脑中的视觉编码,以及神经元
在前所未有的时空尺度上,视觉感知和认知的基础架构。此外,本发明还
我们对脉动激素分泌的建模将适用于皮质醇、性腺类固醇、胰岛素
甲状腺和生长激素与皮质醇分泌异常有关的疾病包括糖尿病、内脏肥胖
以及骨质疏松症、记忆形成障碍和危及生命的艾迪生氏危象。因此,理解
对正常激素释放的潜在冲动性质进行建模将有助于我们理解
病理性神经内分泌状态,提高药物和其他干预治疗的疗效
荷尔蒙失调此外,该项目将结合联合收割机布朗实验室的计算专业知识,
利用苏尔实验室在神经元钙成像方面的实验专业知识,
在NIH脑计划下合作开发新的神经群体分析技术,
单神经元单脉冲分辨率下前所未有的细节。我们的研究已经做好准备,
最先进的计算和系统神经科学工具和桥梁
来自统计学习、信号处理和计算神经科学社区的组件,
为神经数据分析提供统一的分析框架。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
EMERY N BROWN其他文献
EMERY N BROWN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('EMERY N BROWN', 18)}}的其他基金
Investigating the neurophysiological basis of circuit-specific laminar rs-fMRI
研究电路特异性层流 rs-fMRI 的神经生理学基础
- 批准号:
10518479 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Non-Human Primate Model for Developing Closed-Loop Anesthesia Delivery Systems
用于开发闭环麻醉输送系统的非人类灵长类动物模型
- 批准号:
10610946 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Non-Human Primate Model for Developing Closed-Loop Anesthesia Delivery Systems
用于开发闭环麻醉输送系统的非人类灵长类动物模型
- 批准号:
10445654 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Integrated Systems Neuroscience Studies of Anaesthesia
麻醉的综合系统神经科学研究
- 批准号:
10093061 - 财政年份:2017
- 资助金额:
$ 35万 - 项目类别:
The Aging Brain Under General Anesthesia: Neurophysiology, Neuroimaging Biomarkers of Aging and Alzheimer's Disease, and Post-Operative Cognitive Outcomes
全身麻醉下老化的大脑:神经生理学、衰老和阿尔茨海默病的神经影像生物标志物以及术后认知结果
- 批准号:
9904463 - 财政年份:2017
- 资助金额:
$ 35万 - 项目类别:
Integrated Systems Neuroscience Studies of Anaesthesia
麻醉的综合系统神经科学研究
- 批准号:
9209574 - 财政年份:2017
- 资助金额:
$ 35万 - 项目类别:
相似海外基金
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2019
- 资助金额:
$ 35万 - 项目类别:
Discovery Grants Program - Individual
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2018
- 资助金额:
$ 35万 - 项目类别:
Discovery Grants Program - Individual
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2017
- 资助金额:
$ 35万 - 项目类别:
Discovery Grants Program - Individual
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2016
- 资助金额:
$ 35万 - 项目类别:
Discovery Grants Program - Individual
Event detection algorithms in decision support for animals health surveillance
动物健康监测决策支持中的事件检测算法
- 批准号:
385453-2009 - 财政年份:2015
- 资助金额:
$ 35万 - 项目类别:
Collaborative Research and Development Grants
Algorithms to generate designs of potency experiments that use far fewer animals
生成使用更少动物的效力实验设计的算法
- 批准号:
8810865 - 财政年份:2015
- 资助金额:
$ 35万 - 项目类别:
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2015
- 资助金额:
$ 35万 - 项目类别:
Discovery Grants Program - Individual
Event detection algorithms in decision support for animals health surveillance
动物健康监测决策支持中的事件检测算法
- 批准号:
385453-2009 - 财政年份:2013
- 资助金额:
$ 35万 - 项目类别:
Collaborative Research and Development Grants
Development of population-level algorithms for modelling genomic variation and its impact on cellular function in animals and plants
开发群体水平算法来建模基因组变异及其对动植物细胞功能的影响
- 批准号:
FT110100972 - 财政年份:2012
- 资助金额:
$ 35万 - 项目类别:
ARC Future Fellowships
Advanced computational algorithms for brain imaging studies of freely moving animals
用于自由活动动物脑成像研究的先进计算算法
- 批准号:
DP120103813 - 财政年份:2012
- 资助金额:
$ 35万 - 项目类别:
Discovery Projects