Mechanisms of Microvascular Remodeling Progression
微血管重塑进展机制
基本信息
- 批准号:9026447
- 负责人:
- 金额:$ 37.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsAnimal ModelAnimalsArteriesBlood VesselsCaliberCardiovascular DiseasesCardiovascular systemCause of DeathCellsClinicalCytoskeletonDataDevelopmentDisease ManagementEarElastinEventExcisionExtracellular MatrixGelatinase AGoalsHypertensionIndividualInterventionKnowledgeLIM Domain Kinase 1LeadLifeMMP14 geneMatrix MetalloproteinasesMeasuresModificationMolecularMyocardial InfarctionOutcomePatientsPeptidesPrevalenceProcessProductionProteinsPublic HealthPublicationsReportingResearchResistanceResistance ProcessRho-associated kinaseRiskSiteSmooth Muscle MyocytesStagingStimulusStress FibersStrokeStructureSubcellular structureTechniquesTechnologyTestingTherapeuticTissuesUnited StatesVascular Smooth MuscleVascular remodelingWorkbasecofilinconstrictioncrosslinkinsightintravital microscopynormotensivenovelnovel strategiespolymerizationpreventpublic health relevancetransglutaminase 2vasoconstriction
项目摘要
DESCRIPTION (provided by applicant): Vascular remodeling is an adaptive mechanism for long-term modification of vascular diameter. In hypertension, inward remodeling, that is, the structural reduction of the lumen diameter in resistance vessels, is associated with an increased risk for myocardial infarction and stroke. However, despite its prevalence and clinical importance, the mechanisms that control the inward remodeling process remain largely unknown. Our goal here is to identify mechanisms in the inward remodeling process of the resistance vasculature that may be intervened with novel strategies to prevent, stop or reverse the remodeling process, and consequently diminish the life-threatening cardiovascular events associated with it. Current publications and our own preliminary data indicate that tissue-type transglutaminase (TG2), LIM kinase (LIMK), and matrix metalloproteinase-2 (MMP2) within vascular smooth muscle cells (VSMC) are involved in the remodeling process. Therefore, as we and others have determined that inwardly remodeled resistance vessels have actin cytoskeletal structures that reduce their passive diameters and extracellular matrix (ECM) features characterized by a reduction in the number and size of fenestrae in the internal elastic lamina (IEL): Our hypothesis is that during the early stages of the inward remodeling process in resistance vessels, prolonged vasoconstriction leads to formation of permanent VSMC cytoskeletal structures via the intracellular activity of TG2 and LIM kinase, which in turn stimulate the production of MMP2 and the modification of the ECM, in particular the IEL. We will test our hypothesis in VSMC, isolated resistance arteries and a whole animal model of hypertension. Cells and tissues will come from animals, as well as from normotensive and hypertensive individuals. The expression and activity of the remodeling components tested in our hypotheses will be modulated using pharmacological and molecular means. Experimental outcomes will be measured using traditional and leading-edge techniques in protein and enzymatic activity analyses, as well as, atomic force, multiphoton, and long-term intravital microscopy. Our specific aims will test the hypotheses that: 1) Intracellular TG2 activates RhoA, Rho kinase and LIMK to phosphorylate and inactivate cofilin to favor formation of actin networks and stress-fibers, with TG2 further crosslinking actin structures to make them more persistent; and 2) that LIMK activates MMP14 and leads to expression/secretion of MMP2 from VSMC. Then MMP2 through its elastolytic actions generates elastin peptides that activate VSMC to produce more elastin. This new elastin is incorporated in the IEL and reduces the size and number of fenestrae in the IEL. We expect this study will provide new insights on how cytoskeletal and IEL structures of resistance arteries are modified in hypertension. This knowledge should have a positive impact on strategies for preventing and treating hypertension, and the management of diseases associated with vascular remodeling.
描述(由申请人提供):血管重塑是一种长期改变血管直径的适应性机制。在高血压中,向内重构,即阻力血管中管腔直径的结构性减小,与心肌梗死和中风的风险增加相关。然而,尽管它的流行和临床重要性,控制向内重塑过程的机制在很大程度上仍然未知。我们的目标是确定阻力血管系统向内重塑过程中的机制,这些机制可以通过新的策略进行干预,以预防、停止或逆转重塑过程,从而减少与之相关的危及生命的心血管事件。血管平滑肌细胞(VSMC)内的基质金属蛋白酶2(MMP 2)参与重塑过程。因此,正如我们和其他人已经确定的那样,向内重塑的阻力血管具有肌动蛋白细胞骨架结构,其减少了它们的被动直径和细胞外基质(ECM)特征,其特征在于内弹性膜(IEL)中窗孔的数量和大小减少:我们的假设是,在阻力血管向内重塑过程的早期阶段,延长的血管收缩通过TG 2和LIM激酶的细胞内活性导致永久的VSMC细胞骨架结构的形成,其又刺激MMP 2的产生和ECM,特别是IEL的修饰。 我们将在VSMC、分离的阻力动脉和整个高血压动物模型中检验我们的假设。细胞和组织将来自动物,以及来自血压正常和高血压个体。在我们的假设中测试的重塑组分的表达和活性将使用药理学和分子手段来调节。实验结果将使用蛋白质和酶活性分析中的传统和前沿技术,以及原子力,多光子和长期活体显微镜进行测量。我们的具体目标将测试以下假设:1)细胞内TG 2激活RhoA、Rho激酶和LIMK以磷酸化和磷酸化微丝蛋白以促进肌动蛋白网络和应力纤维的形成,其中TG 2进一步交联肌动蛋白结构以使其更持久;和2)LIMK激活MMP 14并导致MMP 2从VSMC表达/分泌。然后MMP 2通过其弹性蛋白溶解作用产生弹性蛋白肽,激活VSMC产生更多的弹性蛋白。这种新的弹性蛋白被纳入IEL中,并减少IEL中窗孔的大小和数量。 我们希望这项研究将提供新的见解,细胞骨架和IEL结构的阻力动脉是如何修改高血压。这些知识应该对预防和治疗高血压的策略以及与血管重塑相关的疾病的管理产生积极的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luis A Martinez-Lemus其他文献
Luis A Martinez-Lemus的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Luis A Martinez-Lemus', 18)}}的其他基金
Targeting ADAM17 activity for correction of vascular insulin resistance in type 2 diabetes
靶向 ADAM17 活性纠正 2 型糖尿病血管胰岛素抵抗
- 批准号:
10359775 - 财政年份:2021
- 资助金额:
$ 37.11万 - 项目类别:
Role of neuraminidase activity on endothelial dysfunction in type 2 diabetes
神经氨酸酶活性对 2 型糖尿病内皮功能障碍的作用
- 批准号:
10207884 - 财政年份:2021
- 资助金额:
$ 37.11万 - 项目类别:
Targeting ADAM17 activity for correction of vascular insulin resistance in type 2 diabetes
靶向 ADAM17 活性纠正 2 型糖尿病血管胰岛素抵抗
- 批准号:
10569599 - 财政年份:2021
- 资助金额:
$ 37.11万 - 项目类别:
Role of neuraminidase activity on endothelial dysfunction in type 2 diabetes
神经氨酸酶活性对 2 型糖尿病内皮功能障碍的作用
- 批准号:
10642932 - 财政年份:2021
- 资助金额:
$ 37.11万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 37.11万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 37.11万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 37.11万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 37.11万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 37.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 37.11万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 37.11万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 37.11万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 37.11万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 37.11万 - 项目类别:
Grant-in-Aid for Early-Career Scientists